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Abstract 
The ISPAD guidelines represent a rich repository that serves as the only comprehensive set of clinical 
recommendations for children, adolescents, and young adults living with diabetes worldwide. This chapter builds 
on the 2022 ISPAD guidelines, and updates recommendations on the glycemic targets for children and 
adolescents living with diabetes. A new target of HbA1c of ≤6.5% (48mmol/mol) for those who have access to 
advanced diabetes technologies like continuous glucose monitoring (CGM) and automated insulin delivery (AID).  
This target should be encouraged for all children and adolescents living with diabetes when safely achievable. In 
other settings, the HbA1c target is ≤7.0% (53mmol/mol). 
 
Summary of what is New or Different 
 
1. This chapter recommends a target HbA1c of ≤6.5% (48mmol/mol) for those who have access to advanced 

diabetes technologies like continuous glucose monitoring (CGM) and automated insulin delivery (AID).  This 
target should be encouraged for all children and adolescents living with diabetes when safely achievable. In 
other settings, the HbA1c target is ≤7.0% (53mmol/mol). The emphasis on the lower HbA1c target is 
deliberate, based on the growing evidence that achieving HbA1c levels below previous targets can 
significantly reduce the risk of developing diabetes complications and that when adequate technology and 
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healthcare professional support are available, these lower glycemic targets can be safely achieved without 
increasing the risk of hypoglycemia or adding to the care burdens. 

2. These glycemic goals may be individualized based on an assessment of the potential challenges for the person 
with diabetes and their caregivers.  

3. The relationship between glycemic targets and rates of excess body weight are discussed. 
4. The glycemic target chapter is also more succinct compared to previous iterations. This chapter is meant to 

provide updated guidance on overall glycaemic management alongside other ISPAD consensus guidelines that 
provide further context and information, including specific populations (e.g. pre-schooler children, limited 
care settings), or situations (e.g. exercise). 

1. The Purpose of setting Glycemic Targets 
Setting glycemic targets for young persons living with diabetes is vital, as optimizing glycemia can greatly 
minimize both immediate and long-term complications [1-6]. This is especially important for children and 
adolescents with diabetes, as they face many years of managing the condition and lifetime consequences of 
dysglycemia [7]. Achieving healthier glycemic outcomes has significant benefits for healthcare systems and 
economic costs, underscoring the importance of targeting glycemic ranges to avert future complications [8].  Yet, 
it is also important to recognize the day-to-day challenges glycemic targets can impose on persons living with 
diabetes, their caregivers, and even their health care team. These targets should be seen as part of a balanced 
approach to long-term management; at times flexibility will be necessary. 
Recent data from diabetes registries show that while a minority of young people are meeting current glycemic 
targets, median HbA1c levels have gradually decreased over the past decades[9-13]. This progress can be 
attributed to several factors, including better, consistent communication of glycemic goals by healthcare teams, 
advancements in treatments like insulin analogs and CGM, a well-trained medical workforce, and the 
development and implementation of automated insulin delivery systems (AID). Additionally, clinical 
benchmarking activities that use published glycaemic targets in their reporting, have been shown to be associated 
with improvement in whole population glycemic metrics[14-17]. However, challenges such as social determinants 
of health, limited resources for pediatric diabetes care, and restricted access to advanced treatments continue to 
impede broader achievement of target glycemia and contribute to health inequities [18-20]. 
For over 20 years, organizations like ISPAD, the American Diabetes Association (ADA), and the National Institute 
for Health and Care Excellence (NICE) in the UK have established and regularly updated glycemic targets based on 
evolving evidence. While lower glycemic targets are associated with improved glycemia [21], the path to 
achieving these targets can be challenging. In 2022, ISPAD set the HbA1c target at 7.0% (53 mmol/mol), with a 
provision for lower targets where feasible, particularly when there is access to gold standard treatments like AID 
[22]. Other societies have adopted lower targets. For instance, Sweden [23], and NICE[11] have lowered their 
targets to 6.5% (48 mmol/mol). Additionally, in 2022 ISPAD communicated that an HbA1c of 6.5% could be safely 
achieved for pre-school children [24]. The ADA recommends an HbA1c of <6.5% as a reasonable goal if “it can be 
achieved without significant risk of hypoglycemia, or negatively impacts on well-being or undue burden of care”, 
but also allows flexibility, stating “individualized goals”.  with <7.0% as the “appropriate” target [25].  
Healthcare professionals and persons with diabetes have various tools for monitoring glycemia, including self-
monitored blood glucose (SMBG) using a glucose meter, CGM and HbA1c. While HbA1c has traditionally been the 
standard measure, it also has limitations that CGM can address. Despite this, CGM is not yet accessible to all 
young people, meaning that SMBG and HbA1c measurements remain critical in many settings, including for 
benchmarking. Combining data from these sources also can offer the most comprehensive view of glycemia, and 
in turn, the best opportunity to tailor care to both the immediate and long-term needs of everyone. 
 

2. Measures of Glycemia and Targets 
 
For educational purposes, three methods of measuring glycemia and their targets are provided in Figure 1. This 
has been updated from 2022 to specifically emphasize the lower HbA1c target of 6.5% (48mmol/mol) for those 
with access to advanced technologies or those who can safely reach that target without additional undue care 
demands. 
 

a. Glycated Hemoglobin 
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Landmark trials have shown that the relationship between the developments of long-term complications and 
glycemia is continuous and non-linear [2, 26].  These robust data justify an HbA1c target of ≤7% (53mmol/mol) 
(Category A evidence). However, evidence for a lower target of ≤6.5% (48mmol/mol) is still emerging as described 
below (Category C evidence).  Overall, further research is needed to evaluate the outcomes of children achieving 
HbA1c levels of ≤6.5%. This should include more comprehensive studies and detailed mathematical modelling of 
existing data sets. Such analysis would help quantify the incremental improvements in complication rates and 
assess any potential increased risks when comparing the HbA1c thresholds of ≤7% (53 mmol/mol) and ≤6.5% (48 
mmol/mol). Yet, at this time communicating a single threshold is a pragmatic approach to convey clear messaging 
that can be implemented in clinical practice. This threshold also facilitates the ability to benchmark outcomes 
adding to the body of evidence demonstrating safety and validity of lower target setting to improvements in 
glycemia [14-17].  Goal setting is important to reduce therapeutic inertia, and therefore regular measuring of 
HbA1c (and other metrics) is an important foundation of clinical care – with an accepted convention of 3 monthly 
assessment, given that HbA1c reflects ~90 days of glycemia. HCP and care teams should consistently and clearly 
communicate the importance of glycemic targets to optimize long-term health outcomes for youth with diabetes 
[21]. 
Refer to the ISPAD CPCG 2024: Diabetes Technologies: Insulin Delivery [27] for the evidence regarding efficacy 
and safety of advanced technologies, including cost effectiveness [28, 29].  
Current glycemic target recommendations are also based on the following observations: 
1. Diabetic Retinopathy: Independent risk factors for developing diabetic retinopathy include not only 

glycaemic management, but also age of onset and duration of diabetes [30, 31], which emphasizes the 
need to pursue optimal glycemic targets in young people with diabetes from diagnosis. Precursors to 
retinopathy are now measurable with optical coherence tomography angiography, and microvascular 
changes are seen in youth with suboptimal glycemic levels[32]. Critically, the lowest rates of diabetic 
retinopathy at the time of transition to adult services are seen where HbA1c is ≤6.5% (48mmol/mol)[33].  

2. Diabetic Kidney Disease: Multiple studies confirm that lower HbA1c protect against the development of 
diabetic kidney disease [1-6]. In contrast to the development of diabetic retinopathy, Swedish registry 
data did not find a similar clear relationship for the development of increased albuminuria at the 6.5% 
(48mmo/mol) HbA1c threshold[33]. There is evidence that some individuals from racial groups have a 
predisposition to developing complications early independently of glycemia and socioeconomic status 
[34, 35]. Indeed, observations from the general population showed that Native  Americans at risk of 
developing type 2 diabetes and HbA1c in a prediabetes range (5.7 – 6.4% (39-47mmol/mol)) had higher 
incidence of albuminuria, and retinopathy than children with optimal HA1c levels[36]. However, there is 
limited evidence supporting reductions in diabetic kidney disease onset and progression at HbA1c levels 
below 7% in type 1 diabetes. 

3. Diabetic neuropathy:  While systematic reviews confirm the relationship between HbA1c and the 
development of diabetes neuropathy[36], there is, again, a paucity of data to derive a specific threshold 
that confers significant additional risk. An HbA1c >7% (53mmol/mol) was associated with a higher risk of 
developing diabetic neuropathy in adolescents with type 1 diabetes for >5 years, but the risk associated 
with a lower threshold of 6.5% (48mmol/mol) was not assessed[37]. Further data, or modelling, are 
needed to confirm the additional benefit of using a target of 6.5% (48mmol/mol) for protecting against 
the development of diabetic neuropathy and other vascular complications. 

4. Cognition: Optimal glycemia is associated with improved cognitive function, including memory, learning 
and attention [13, 38-41]. Yet, in settings where hypoglycemia-protective technologies such as CGM and 
AID are not available or adopted, there may be unacceptable risks of severe hypoglycemia and associated 
negative impact on cognitive function. Overall, with respect to cognition, a lower target of 6.5% should be 

• ISPAD recommends an HbA1c target of ≤6.5% (48mmol/mol) for those who 

can safely reach that target with the support of advanced technologies (CGM 

and AID) and/or where the pursuit of the lower target does not add burden 

such that quality of life is impacted [C] 

• ISPAD recommend an HbA1c target of ≤7% (53mmol/mol) in all other 

scenarios [A] 
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carefully guided on individual basis, particularly in situations with limited access to glucose monitoring 
and technologies that suspend insulin when glucose is low or projected to be low.  

5. Burden:  Recognizing and addressing the psychosocial and behavioral needs of youth with diabetes and 
their families is a key element of their care. The relationship between the demands of care and HbA1c is 
complex, for example while some reports describe the challenges of diabetes technology, improved 
quality of life and glycemia have been consistently demonstrated [27]. Burden of care can be considered 
in the following domains; psychological, behavioural, social, quality of life, and economic. Avoidance of 
complications with lower HbA1c will lower the health cost of diabetes and can be safely achieved with 
advanced diabetes technologies, with proven health economic benefits. Adoption of these technologies 
are associated with potential barriers, which includes perceived and actual workload, physical 
discomforts, frustrations with technical glitches and alarms, as well as concerns about device size/visibility 
and stigma [42-44]. Potential benefits of diabetes technologies must also be recognized, with 
improvements in individual and parental health of life [45], as well as autonomy, greater flexibility in 
social activities and eating, improved sleep, and higher treatment satisfaction being reported [27]. 

6. Body Mass Index (BMI): Due to overweight and obesity being established independent risk factors for 
developing cardiovascular disorders, any relationship between glycaemic targets and BMI is an important 
consideration. This is especially relevant given that while international registries are demonstrating an 
overall improvement in HbA1c, there are also increasing prevalence of higher BMI-standard deviation 
scores (SDS) [46, 47]. Earlier landmark studies have shown increased excess weight gain and obesity with 
intensive treatment [26]. However, there are apparent external influences on BMI independent of HbA1c, 
as is apparent with the U-shaped curve with the highest HbA1c observed in groups with unhealthy weight 
[48]. Some studies have reported inverse associations between HbA1c and BMI-SDS[49-51]. However, 
other studies have found high BMI-SDS significantly related to higher HbA1c levels [47, 52], or reported 
children with type 1 diabetes can achieve glycemic targets on intensive insulin therapy without excessive 
weight gain [53, 54].  Use of advanced technologies such as AID is associated with improved glycemia 
without change in BMI [55, 56]. The emergence of increased overweight and obesity in the pediatric 
population living with diabetes underpins the importance of dietetic education, to ensure the benefits of 
improved glycemia are not offset by increasing BMI. These data highlight the need for additional research 
and innovative care approaches to address rising rates of overweight and obesity and risk for premature 
cardiovascular disease in this vulnerable population. 

b. Continuous Glucose Monitoring 
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Average sensor glucose, due to its strong correlation with HbA1c and its association with the risk of microvascular 
complications[57] and glycemic variability (which can predict hypoglycemia), is a key metric included of 
standardized CGM reports, known as ambulatory glucose profiles (AGPs). When available, CGM targets can be 
considered as an alternative or adjunct to HbA1c targets. As CGM technology is still relatively new, further 
research linking CGM data to the development of diabetes complications is needed to refine these glycemic 
targets with greater certainty. 
Given the strong correlation between CGM metrics and HbA1c [58], it is reasonable in a clinical setting to use 
CGM along with the Glucose Management Index metric as a standalone method for setting glycemic targets. This 
could be especially relevant in situations where CGM data is easier to obtain than an HbA1c (telehealth, limited 
access to HbA1c measurement). 
Time spent in tight glucose range (TITR) (3.9–8 mmol/L or 70–144 mg/dL) has recently been suggested as a new 
metric to characterize optimal glycemia [59, 60]. ISPAD has previously endorsed TITR as a metric in pre-school 
schoolers with T1D, especially during the remission period [61]. TITR may be  preferable to TIR when targeting  
lower HbA1cs since it may be more sensitive to glycemic changes at lower average sensor glucose levels and it 
may also better characterize glucose variability [62]. 
Generally, TITR targets have been set at 50%; however, to reach the lower HbA1c target of ≤6.5% (48mmol/mol), 
an even greater TITR of > 55%  may be needed [63]. While we await  additional, high quality evidence for this 
metric in youth with diabetes [64], as well as guidance on how best to message and use this metric for clinical 
care, it is logical that increasing time spent in a tight range may reflect lower glucose variability and reduce the 
long-term risk of complications.  Importantly, when selecting any CGM metric to use in care settings it is essential 
to adopt an educational framework that places the child and caregiver at its core and is sensitive to holistic health 
needs that extend beyond glucose levels.  
Self-Monitored Blood Glucose  

• Children and adolescents with diabetes should strive for the following % times 

spent in the following glycemic ranges [B]:     

>70% between 3.9 – 10mmol/L (70 – 180mg/dL),   

<4% <3.9mmol/L (70mg/dL),   

<1% <3.0mmol/L (54mg/dL),   

<25% >10mmol/L (180mg/dL),  

<5% >13.9mmol/L (250mg/dL)  

These times in range are chosen to align with previously-published recommendations 

(45) 

• It is recognized that time spent in range (TIR) may need to be >80% to achieve 

an optimal HbA1c target of ≤6.5% (48mmol/mol) [E]. 

• It is also recognized that an emerging metric requiring additional validation of 

>50% Tight Time in range (TTIR) (3.9–8 mmol/L or 70–144 mg/dL) may allow for 

greater sensitivity for assessing changes in mean glucose and glucose variability 

(CV) [C] 

• CGM-derived Glucose Management Index metrics can be considered as a 

standalone method for evaluating glycemic outcomes [C].  
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SMBG meter values should be targeted to correspond to an HbA1c ≤7% (≤53mmol/mol), to align with the CGM 
time in range (TIR) target of >70% between 4 – 10mmol [70-180mg/dL], and the strong correlation of CGM 
metrics with HbA1c reviewed earlier. For educational purposes 3.9mmol/L (70mg/dL) has been intentionally 
rounded to 4.0mmol/L, however some centres may use 3.9mmol/L as usual practice. Fasting target ranges 
glucoses of 4.0 – 8mmol/L [70 – 144mg/dL] are recommended to achieve this HbA1c target. SMBG glucose levels 
prior to bed of 4.0 – 8mmol [70-144mg/dL] are appropriate, however caregivers may have more confidence with 
higher levels within the 4.0 - 10mmol/L (70-180mg/dL] range in certain scenarios; for example, if there has been 
preceding hypoglycemia, exercise, hypoglycemic unawareness. 
 

3. Practical Considerations and Limitations. 
Each mode of measuring glycemia comes with its own limitations and practical considerations.  HbA1c has long 
been the accepted benchmark for glycemia. However, it has several limitations such as i) for a given HbA1c, there 
is a wide range of mean glucose concentration values, and for any given mean glucose value there is a wide range 
of HbA1c values[65], ii) racial differences[66] and iii) unreliable measurement in certain conditions including 
anemia, hemoglobinopathies and liver disease [58]. CGM may be impacted by various pharmaceutical agents[67], 
and can be intermittently inaccurate, however, overall accuracy in modern CGM technology is very high [68-70]. 
SMBG retains a place in measuring glycemia where this is the only mode available, but maintaining the >6 self-
tests per day to guide management has long been recognized as a significant barrier to improving overall glycemia 
[71]. Overall, the strengths and limitations of each mode of measuring glycemia should be considered and 
interpreted in accordance to the environment and/or clinical characteristics of the person with diabetes.  
In addition, while advanced technologies are enabling people with diabetes and healthcare professionals to aim 
for near-optimal blood glucose levels, the demands of care and the limitations of current treatment options 
prevent this being a reality for most young people with diabetes and their caregivers. 
 

4. Conclusion 
 
Future research is needed to evaluate differences in risk of complications and perceived care burdens between 
the currently proposed HbA1c target of 6.5% (48 mmol/mol) and the former 7.0% (53 mmol/mol) target.  The 
former might be achieved using mathematical modelling to assess the relative risk of diabetes complications 
based on historical and contemporary data. These data would help inform the benefits of a lower HbA1c weighed 
against any increased burden of care, and assist an individualised approach to setting glycemic targets.    
As we move forward, there is also a need to utilize standardized CGM metrics alongside emerging diagnostic 
techniques that can predict diabetes complications. This approach will help bridge the gap until long-term registry 
data can confirm the relationship between CGM metrics and complication development.  
Herein, we advocate for a shift in HbA1c targets that aligns with advancements in diabetes technologies and care. 
This approach is pragmatic to the immediate needs of individuals and their caregivers while embracing 
anticipatory and preventive care strategies for the long term. To achieve uniform glycemic targets across the 
ISPAD community, ongoing efforts are needed to address global disparities in access to these technologies 
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Figure Legends 
Figure 1. Summary of Glycemic metrics  
* For those who don’t have access to advanced technologies or unable to safely attain the lower target. 
‡ And/or where the pursuit of the lower target does not add burden such that quality of life is impacted. 
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