
Recommendations for the use of natriuretic peptides for early diagnosis of heart disease in patients with diabetes: A consensus report by SPEDM, SPC, NEDM-SPMI and APMGF

João Sérgio Neves Rui Baptista Estevão Azevedo de Pape Manuel Rodrigues Pereira Rita Paulos Jonathan Pinheiro dos Santos Cristina Gavina João Jácome de Castro

Accepted Date: 27 July 2024

Please cite this article as: Neves JS, Baptista R, de Pape EA, Pereira MR, Paulos R, Santos JPd, Gavina C, de Castro JJ, Recommendations for the use of natriuretic peptides for early diagnosis of heart disease in patients with diabetes: A consensus report by SPEDM, SPC, NEDM-SPMI and APMGF, *Revista Portuguesa de Cardiologia* (2024), doi: https://doi.org/10.1016/j.repc.2024.07.010

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier España, S.L.U. on behalf of Sociedade Portuguesa de Cardiologia.

Recommendations for the use of natriuretic peptides for early diagnosis of heart disease in patients with diabetes: A consensus report by SPEDM, SPC, NEDM-SPMI and APMGF

João Sérgio Neves^{1,2,3,*}, Rui Baptista^{4,5,6,7}, Estevão Azevedo de Pape^{8,9}, Manuel Rodrigues Pereira^{10,11}, Rita Paulos^{9,12}, Jonathan Pinheiro dos Santos^{11,13,14}, Cristina Gavina^{15,16,17}, João Jácome de Castro^{3,18}

¹Departamento de Endocrinologia, Diabetes e Metabolismo, Hospital de São João, Unidade Local de Saúde de São João, Porto, Portugal ²Unidade de Investigação e Desenvolvimento Cardiovascular (UnIC), Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal ³Sociedade Portuguesa de Endocrinologia, Diabetes e Metabolismo (SPEDM), Portugal ⁴Departamento de Cardiologia, Hospital São Sebastião, Unidade Local de Saúde de Entre o Douro e Vouga, Santa Maria da Feira, Portugal ⁵Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal ⁶Centro de Biomedicina e Biotecnologia Inovadoras (CIBB), Coimbra, Portugal ⁷Centro Académico Clínico de Coimbra (CACC), Coimbra, Portugal ⁸Hospital Garcia de Orta, Almada, Portugal ⁹Núcleo de Estudos da Diabetes Mellitus da Sociedade Portuguesa Medicina Interna (NEDM-SPMI), Portugal ¹⁰Associação Protetora dos Diabéticos de Portugal, Lisboa, Portugal ¹¹Grupo de Estudos de Doenças Cardiovasculares da Associação Portuguesa de Medicina Geral e Familiar (APMGF), Portugal ¹²Hospital Distrital de Santarém, Unidade Local de Saúde da Lezíria, Santarém, Portugal ¹³Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS), Porto, Portugal ¹⁴Instituto CUF, Porto, Portugal ¹⁵Hospital Pedro Hispano, Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal ¹⁶Faculdade de Medicina da Universidade do Porto, Porto, Portugal ¹⁷Sociedade Portuguesa de Cardiologia (SPC), Portugal ¹⁸Hospital das Forças Armadas, Lisboa, Portugal

*Corresponding author.

E-mail address: joaosergioneves@gmail.com (J. Neves)

Recomendações para a utilização de péptidos natriuréticos no diagnóstico precoce da insuficiência cardíaca em doentes com diabetes: consenso da SPEDM, SPC, NEDM-SPMI e APMGF

Resumo

A diabetes *mellitus* é um fator de risco significativo para o desenvolvimento de doenças cardíacas, sendo a insuficiência cardíaca uma das primeiras manifestações da doença nesta população. O processo de diagnóstico é complexo e contribui para um número significativo de casos não diagnosticados de doença cardíaca em doentes diabéticos, devido à natureza não específica dos sintomas e sinais, ou à impossibilidade da sua deteção em fases iniciais da doença. A deteção precoce e a prevenção da doença cardíaca em doentes diabéticos poderão contribuir para melhorar significativamente o prognóstico dos doentes e reduzir os encargos crescentes desta população sobre o Sistema Nacional de Saúde.

Os peptídeos natriuréticos (BNP e NT-proBNP) têm sido reconhecidos como fidedignos, rentáveis e com um peso relevante na deteção de doença cardíaca, podendo ser utilizados como biomarcadores para avaliação de risco em doentes assintomáticos. Apesar de serem recomendados em várias diretrizes europeias e americanas na exclusão ou identificação da insuficiência cardíaca, a utilização sistemática destes biomarcadores para o diagnóstico de doenças cardíacas em doentes diabéticos só recentemente foi proposta pela *American Diabetes Association* (ADA), não estando ainda em prática em Portugal. Como tal, foi reunido um painel de especialistas de quatro sociedades médicas portuguesas, a SPEDM (Sociedade Portuguesa de Endocrinologia, Diabetes e Metabolismo), SPC (Sociedade Portuguesa de Cardiologia), NEDM-SPMI (Núcleo de Estudos da Diabetes Mellitus da Sociedade Portuguesa de Medicina Interna), e APMGF (Associação Portuguesa de Consenso para o rastreio de péptidos natriuréticos em doentes diabéticos, bem como a sua integração no protocolo de rotina de gestão da diabetes.

Este manuscrito transpõe as recomendações de consenso das quatro sociedades médicas portuguesas, fornecendo orientações claras, e ajustadas à prática clínica portuguesa, sobre o uso dos peptídeos natriuréticos. É recomendada a análise do NT-proBNP em todos os doentes diabéticos com idade igual ou superior a 50 anos, ou inferior a 50 se tiverem fatores de risco e/ou comorbilidades. São fornecidos valores recomendados para exclusão e diagnóstico de doenças cardíacas na população diabética, tendo em conta a idade, sexo e outros fatores de risco. Os níveis de NT-proBNP superiores a 125 pg/mL devem motivar testes adicionais e investigação

cardiovascular. Propõe-se uma avaliação de rotina a cada 2-3 anos para os doentes de baixo risco e anualmente para os doentes de alto risco quando o NT-proBNP é inferior a 125 pg/mL e na ausência de suspeita de doença cardíaca.

PALAVRAS-CHAVE

Doença cardíaca; Diabetes *mellitus*; Péptidos natriuréticos; NT-proBNP; Avaliação do risco cardiovascular

ABSTRACT

Diabetes is a significant risk factor for the development of heart disease (HD), with heart failure (HF) being one of the early manifestations of the disease in this population. The diagnostic process is challenging and contributes to a significant number of undiagnosed cases of HD among individuals with diabetes. This is largely due to the non-specific nature of symptoms and signs in the initial stages of disease, making early detection elusive. Timely identification and prevention of HD in patients with diabetes have the potential to significantly improve patient prognosis and alleviate the growing burden of this population on the national healthcare system.

Natriuretic peptides (BNP and NT-proBNP) have been recognized as reliable, cost-effective biomarkers for detecting HD and can be further used as risk assessment biomarkers in asymptomatic patients. Despite being recommended in several European and American guidelines to rule out and rule in HF, the routine use of these biomarkers for the diagnosis of HDs in patients with diabetes has only recently been proposed by the American Diabetes Association (ADA) and has not yet been implemented in Portugal. Therefore, a multidisciplinary panel of experts from four medical societies, the Portuguese Society of Endocrinology, Diabetes and Metabolism, the Portuguese Journal of Cardiology, the Diabetes Study Group from the Portuguese Society of Internal Medicine and the Portuguese Association of Family Medicine were convened to discuss and establish consensus recommendations for natriuretic peptide screening in patients with diabetes and its integration into routine diabetes management protocols.

This manuscript draws on the consensus recommendations from four Portuguese medical societies, offering clear guidance on natriuretic peptides use tailored to Portuguese clinical practice. Accordingly, this consensus advises the use of NT-proBNP analysis for all patients with diabetes aged 50 years and older, or under 50 if they have risk factors and/or comorbidities. Adjusted rule-out and rule-in values for age, sex and risk factors are provided. NT-proBNP levels above 125 pg/mL should prompt additional testing and cardiovascular investigation. Routine evaluation every two to three years for low-risk patients and annually for high-risk patients is proposed when NT-proBNP is below 125 pg/mL and in the absence of suspected heart disease.

KEYWORDS: Heart disease, diabetes, natriuretic peptides, NT-proBNP, cardiovascular risk assessment

I. INTRODUCTION

Diabetes imposes a significant burden on individuals and society. The global estimate of persons affected by diabetes in 2021 reached 537 million people, a figure projected to increase to 700 million by 2045.¹ In Portugal, estimates of the prevalence of diabetes in 2021 stood at approximately 1.1 million individuals (14.1% of the adult population), with an associated mortality of around 3.3% of total deaths.²

Individuals with diabetes, both type 1 (T1D) and type 2 (T2D), face an increased risk of developing heart disease, with T2D recognized as an independent risk factor for both atherosclerotic cardiovascular disease and heart failure (HF). Recently, data has emerged documenting HF as a prevalent complication of diabetes and often the inaugural manifestation of heart disease (HD) in these patients.³ Specifically, the risk of HF development in T2D patients is 2 to 4 times higher than those without diabetes^{4, 5} and therefore, warrants specific screening strategies.⁶ The latest epidemiological study of HF in Portugal revealed that this condition has an overall prevalence of 16.5% for individuals older than 50 years, and that 90% of the cases were undiagnosed. Additionally, 45% of HF with reduced ejection fraction (HFrEF) patients and 25% of HF with preserved ejection fraction (HFpEF) patients had T2D (PORTHOS study results, Gavina C & Baptista R, personal communication, NOVA Medical School, Lisbon, Portugal, 12 December 2023). Numerous factors, including diabetes duration, poor glycemic control, sex, poorly controlled hypertension, hyperlipidemia, obesity, microalbuminuria and glomerular hyperfiltration, renal dysfunction, ischemic HD and peripheral arterial disease, contribute to the risk of HF in both T2D and T1D patients. Despite the complex and multifactorial nature of HF pathophysiology in patients with diabetes, diabetes can contribute directly to the development of structural HD and HF via systemic, myocardial, and cellular mechanisms⁷, a process leading to the so-called "diabetic cardiomyopathy".⁸ Therefore, timely and accurate diagnosis of HD in the context of diabetes is critical to delay disease progression and improve quality of life.

This consensus paper summarizes the collective recommendations of the Portuguese Society of Endocrinology, Diabetes and Metabolism (SPEDM), the Portuguese Journal of Cardiology (SPC), the Diabetes Study Group from the Portuguese Society of Internal Medicine (NEDM-SPMI) and the Portuguese Association of Family Medicine (APMGF), which support the integration of natriuretic peptides (NPs) testing in the comprehensive management of patients with diabetes. These recommendations apply to the primary care setting as well as to patients with diabetes followed in the hospital for non-cardiac conditions. The document emphasizes the central role of NP testing as an integral element in the early diagnosis and risk assessment of HD. In addition, it provides tailored guidance on the effective use of NPs for the surveillance of HD in Portuguese

clinical practice, considering the presence or absence of signs and symptoms, risk factors and comorbidities, while suggesting additional diagnostic tests when deemed appropriate.

II. THE VALUE OF EARLY HEART DISEASE DIAGNOSIS IN PATIENTS WITH DIABETES

The diagnosis of HD in individuals with diabetes poses a significant challenge due to its potentially asymptomatic nature. Even when symptoms like dyspnea and fatigue do manifest, their lack of specificity often results in delayed or missed diagnoses.⁹ Indeed, it is estimated that one in three adults with T2D in the United States may harbor asymptomatic or undetected cardiovascular disease.¹⁰

Numerous studies have highlighted the intricate relationship between diabetes and HD, emphasizing the need for early detection and management of cardiovascular risk factors.^{3, 11-13} Patients with diabetes who develop HD face higher mortality and increased hospitalization risk compared to their non-diabetic counterparts. Recognizing the substantial global impact of these conditions in terms of burden, mortality, disability, and costs, early diagnosis becomes crucial for modifying unhealthy lifestyles and enhancing effective treatment.¹⁴ Notably, screening for HF in these patients, incorporating a comprehensive assessment of medical records and symptom evaluation, proved to be cost-effective, prompting the reflection on the potential impact of proactive screening on overall patient well-being and reduced healthcare costs associated with the treatment of HF in this population. The American Diabetes Association (ADA) and the American Heart Association (AHA) jointly recommend regular screening for HF in patients with diabetes, especially for those with additional risk factors such as hypertension and obesity. Diabetic HD, including coronary artery disease and cardiomyopathy, may progress silently without noticeable symptoms in its early stages. The accurate and early identification of HD in patients with diabetes allows for the implementation of preventive measures and prompt initiation of treatment and lifestyle modifications, preserving cardiac function, alleviating symptoms, and enhancing overall quality of life.³ Specifically, early diagnosis of diabetic-associated HD, particularly diabetic cardiomyopathy, facilitates timely targeted interventions, potentially preventing the progression to ACC/AHA stage C HF.¹⁵

The pivotal role of prevention in HF and cardiac events is evident in landmark studies. The Screening To Prevent Heart Failure (STOP-HF) randomized trial, which involved patients with cardiovascular risk factors, demonstrated that BNP-based screening, along with collaborative care involving a specialist cardiovascular service, reduces the risk of left ventricular systolic and/or diastolic dysfunction and newly diagnosed HF.¹⁶ Another study, the PONTIAC trial, showcased the

safe and effective use of RAS antagonists and beta-blockers for prevention of cardiac events in high-risk patients with diabetes.¹⁷

In summary, early diagnosis of HD in diabetes improves health outcomes, reduces cardiovascular morbidity and mortality, and enhances quality of life. These findings underscore the critical importance of early detection and management of HD in people with diabetes and highlight the potential for health benefits and resource savings in healthcare systems.

III. THE CRUCIAL ROLE OF NATRIURETIC PEPTIDES IN EARLY DETECTION OF HEART DISEASE

Screening for structural HD in asymptomatic patients with diabetes is challenging. Easy access to sensitive diagnostic methods would optimize the identification of the patients for echocardiography referral. Natriuretic peptides (NPs), primarily BNP and NT-proBNP, are recognized biomarkers of myocardial stretch and biomechanical stress¹⁸ that have been used to aid in the diagnosis, assessment of disease severity and prognosis in HD, including for DM patients.^{18, 19} Slightly elevated NP concentrations in the bloodstream may serve as early indicators of changes in heart structure and function, heightening the risk for future HF, coronary HD, or mortality.¹⁰ In the absence of clinically overt HF, this condition has been termed as "heart stress". The concept of "heart stress," based on increased NT-proBNP levels in asymptomatic patients with risk factors for HD (i.e. diabetes, arterial hypertension, ischemic HD), has also been introduced by the European Society of Cardiology (ESC), underscoring the pivotal role of NT-proBNP in the early and accurate diagnosis of HD, even in the absence of other symptoms.²⁰

Natriuretic peptides, secreted by cardiac ventricles in response to increased pressure and volume, are sensitive indicators of cardiac stress and dysfunction.^{11, 21} Indeed, NT-proBNP levels have been shown to be a valuable biomarker in the evaluation of HF in patients with diabetes²²⁻²⁴. A comparative cohort study analyzing the role of NT-proBNP levels in the assessment of individuals with both diabetes and HF concluded that NT-proBNP holds a pivotal role in the comprehensive evaluation of their overall status, facilitating the establishment of appropriate management strategies and subsequent follow-up procedures.²³ In addition, a randomized trial revealed an association between NT-proBNP levels and an elevated risk of hospitalization in HF patients, including those with diabetes.²⁴ Collectively, these findings underscore the utility of NT-proBNP as an insightful biomarker for assessing cardiac health beyond conventional imaging assessments.

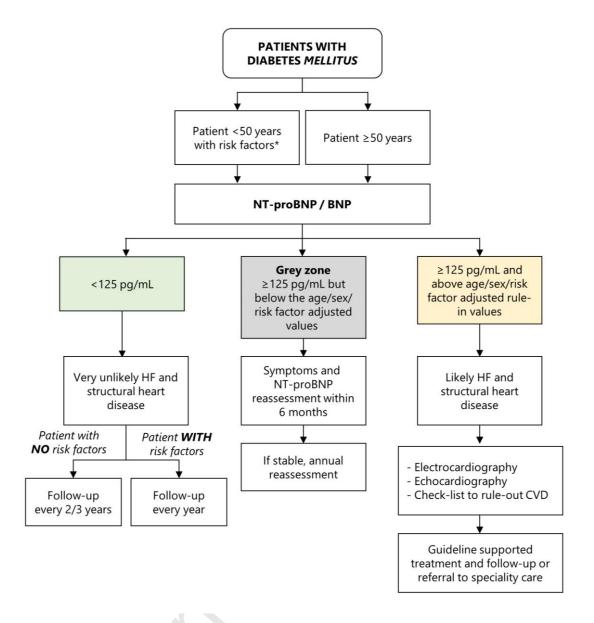
NT-proBNP, recognized for its high sensitivity and stability, is the most widely employed peptide in Europe for HF diagnosis and management. Its longer half-life, stability at room temperature

without requiring additives, and resistance to treatments affecting BNP degradation contribute to its advantageous characteristics over BNP.^{20, 25, 26} Elevated NP levels, often observed in HD patients with DM, reflect the severity of the condition, even in the absence of classic symptoms or clear echocardiographic evidence. NP measurements have been successfully combined with clinical risk scores (WATCH-DM) to refine the prediction of incident HF risk for the population of adults with diabetes.²⁷ Furthermore, studies show that elevated NT-proBNP levels predict overall and cardiovascular mortality in T2D patients,¹⁹ as well as short-term cardiovascular mortality risk in elderly people, even for those who do not have pre-existing cardiovascular disease.²⁸

Recent guidelines from the ESC, the American Heart Association/American College of Cardiology (AHA/ACC), and the consensus report of the ADA suggest that the measurement of NPs should be considered for the diagnosis of HF, along with a systematic screening for HF signs and symptoms during each clinical encounter, recognizing the relevance of these biomarkers for the early detection of the disease and risk prediction (Table 1).^{3, 6, 20, 29} This builds upon previous guidelines where NP usage was solely recommended for ruling out HF.¹¹

	Type of document	Authors	Recommendation	Class ¹	
ESC 2021	Guidelines for the diagnosis and treatment of acute and chronic HF	McDonagh et al. (2021)	BNP or NT-proBNP recommended to be measured in all patients when chronic HF is suspected		Rule-in values ² : NT-proBNP ≥125 pg/mL BNP ≥35 pg/mL
AHA /ACC /HFSA 2022	Guidelines for the management of HF	Heidenreich et al. (2022)	BNP or NT-proBNP recommended: - to be measured in all patients with dyspnea - for risk stratification - to establish prognosis at admission for hospitalized patients for HF		
ADA 2022	A consensus report	Pop-Busui et al. (2022)	BNP or NT-proBNP recommended to be measured: - on a yearly basis for stages A and B - when dyspnea is present (C and D)	NA	Rule-in values ² : NT-proBNP ≥125 pg/mL BNP ≥50 pg/mL Definition of 4 HF risk classes/stages for individuals with diabetes (A, B, C, D);
ESC 2023	Guidelines for the management of cardiovascular disease in patients with diabetes	Marx et al. (2023)	BNP or NT-proBNP recommended to be measured: -if HF is suspected by the presence of signs or symptoms		Rule-out values: NT-proBNP <125 pg/mL BNP <35 pg/mL
ESC 2023	Position paper	Bayes-Genis et al. (2023)	NT-proBNP recommended to be measured: - when HF is suspected - in asymptomatic patients if there are risk factors (as T2D). Repeat measurement according to the likelihood of heart stress	NA	 Definition of ruling out and ruling in HF NT-proBNP values for using in two different scenarios when HF is suspected: emergency department, outpatient setting. Heart stress concept: NT- proBNP levels are elevated in an asymptomatic patient with risk factors for HF, underlying the development of cardiac dysfunction and further increased risk

Table 1. Summary of the most recent guidelines on the use of natriuretic for heart failure diagnosis.


¹Class of recommendation: green means recommended or indicated; ²rull-in for further exploration; ESC – European Society of Cardiology; AHA/ACC/HFSA – American Heart Association / American College of Cardiology / Heart Failure Society of America. NA– not applicable.

Factors Influencing natriuretic peptide levels

Natriuretic peptide levels can be influenced by factors such as advanced age, renal dysfunction (low estimated glomerular filtration rate [eGFR]), obesity, atrial fibrillation, anemia, obstructive sleep apnea, pulmonary hypertension, or sepsis.^{3, 30, 31} Some factors, like age, sex, chronic kidney disease, and atrial fibrillation, tend to increase NP levels, whereas obesity is associated with their reduction. NT-proBNP levels independently increase with age in healthy individuals, particularly after the age of 70³², with women often exhibiting higher values than men.³³ Higher NP levels have also been associated with a decrease in eGFR as renal functional deteriorates and the decreased renal clearance raises NP concentrations.^{34, 35} Atrial fibrillation (AF), also associated with an elevation of NP levels, may be related to the immediate hemodynamic alterations during the actual episode of AF, since NPs are mainly produced and secreted by the cardiomyocytes in the atria and ventricles in response to hemodynamic wall stress, and are sensitive to heart rate and rhythm disturbances.^{36, 37} In contrast, excess weight and obesity are associated with lower NP levels^{38, 39} potentially linked to impaired NP production.⁴⁰ Overweight and obese individuals have a 1.4- to 3.5-fold and 1.8- to 4.8-fold increased odds of having low plasma natriuretic peptide levels compared to those with a normal body mass index.⁴¹ Adjusting NT-proBNP cut-off values considering these factors may enhance the diagnostic and prognostic accuracy of biomarkers in HF diagnosis.

IV. THE PORTUGUESE CONSENSUS FOR EARLY DIAGNOSIS OF HEART DISEASE IN PATIENTS WITH DIABETES

NT-proBNP Concentrations to Trace and Diagnose HD in the Outpatient Setting Individuals with T2D are predisposed to an earlier onset of HF compared to those without the disease, and the incidence of HF also rises as they age.⁴² A Portuguese epidemiological survey indicates a 1.36% (0.39–2.33%) prevalence of chronic HF in the age group of 25 to 49 years, increasing markedly with age.⁴³ This result is similar to other European reports suggesting a relatively low cardiovascular risk below age 50.³³ In light of this, it is proposed that NT-proBNP levels should be assessed for every patient with diabetes aged 50 or above, irrespective of risk factors or comorbidities (Central Figure). For T1D and T2D patients under the age of 50, NTproBNP analysis is recommended in the presence of risk factors (obesity, hypertension, CKD, coronary artery disease, smoking or HbA_{1c} above target).^{44, 45} It is important to highlight that NTproBNP levels interact heavily with several clinical factors, namely age, sex, BMI, renal function, heart rhythm and volume status; therefore, the pre-test probability of HD (prior history, risk factors, physical exam) must be taken in consideration when assessing the diagnostic and prognostic value of this biomarker.

Central figure – Algorithm for screening and diagnosis of HD in patients with diabetes. *Risk factors: obesity, hypertension, chronic kidney disease, coronary artery disease, smoking or HbA1c above target.

In agreement with European and American guidelines^{3, 6, 11, 20}, HF and structural HD are considered very unlikely when NP-proBNP concentrations fall below 125 pg/mL. The directive to evaluate NP for DM patients over 50, regardless of symptoms or signs indicative of HD, should be complemented with a comprehensive assessment for HD symptoms (e.g., breathlessness, dyspnea on exertion, orthopnea, paroxysmal nocturnal dyspnea, nocturia, fatigue, tiredness, increased time to recover after exercise) and signs (e.g., weight gain, peripheral edema, elevated jugular venous pressure, hepatojugular reflux, third heart sound, or laterally displaced apical impulse).⁶ Risk factors such as advanced age and sex, along with comorbidities including obesity, chronic kidney

disease, and AF, can influence NP concentrations and modify the rule-in levels. The joint SPEDM, SPC, NEDM-SPMI and APMGF consensus proposes NT-proBNP cut-off values adjusted for the aforementioned risk factors and comorbidities (Table 2), based on a previous consensus document by the ESC.²⁰ To facilitate risk calculation, the working group has developed an online application for calculating age-, sex-, and comorbidity-adjusted NT-proBNP cut-off values, which can be accessed at www.calculadorantprobnp.pt.

Complementary exams if NT-proBNP levels are elevated

Elevated concentrations NT-proBNP exceeding the rule-out-value of 125 pg/mL warrant further investigation.⁶ Aligned with European Guidelines, the SPEDM, SPC, NEDM-SPMI and APMGF joint consensus recommends initiating the investigation for HD with a detailed clinical history and selected ancillary studies. Prior history should focus on conditions increasing the risk of HF, as prior history of coronary artery disease (including myocardial infarction and revascularization procedures), arterial hypertension, prior exposure to cardiotoxins and/or thoracic radiation and use of diuretics, along with a dedicated symptom-directed questionnaire, including the most typical and less common symptoms. The physical exam must try to elicit signs of congestion and, seldomly, low output features.⁴⁶ The FIND-HF (Fatigue, Increased water accumulation/congestion, NP testing, Dyspnea and HF) mnemonic has been proposed to promote both awareness for the condition (HF) and for m=taking NP measurements in at-risk patients.²⁰

The next step is the request for an electrocardiogram (ECG) and doppler transthoracic echocardiogram (TTE). The threshold for this should be low, taking into consideration the low sensitivity of signs and symptoms. ECGs are advised for detecting arrhythmias, AF, or atrial flutter and abnormalities suggestive of ischemia or left ventricular hypertrophy, serving as baseline for monitoring potential changes in subsequent ECGs. TTEs are recommended to comprehensively assess cardiac function and structure, including left ventricle systolic and diastolic function (Figure 1). A chest X-ray is suggested solely if the clinical evaluation indicates that it would yield additional information. Request for ancillary exams should accompany an investigation aimed at excluding cardiovascular disease, focusing on aspects detailed in Figure 1. In instances where HF is ruled out but NT-proBNP levels are elevated, investigations into other diseases such as AF, chronic kidney disease, pulmonary hypertension, COPD and high-output conditions as liver failure or hyperthyroidism are warranted.

Referral to a cardiovascular specialist is contingent upon clinical evaluation, NT-proBNP levels assessment, and the results of complementary exams. A cardiologist or HF specialist, in addition to confirming or excluding other conditions, will optimize risk factors and comorbidities, assess

prognosis, explore potential advanced HD therapies, and establish a collaborative framework with primary care clinicians for ongoing management of symptoms, comorbid conditions, and prognosis.⁴⁷

MEN							WOMEN				
(Cut-off values f	or norm	al sinus r	hythm							
eGFR (mL/min/1.73 m ²)							eGFR (mL/min/1.73 m ²)				
ВM	I <30 kg/m ²										
		<30	30-45	45-60	>60	< 30	30-45	45-60	>6		
	<60	101	94	86	75	169	156	144	12		
Age	60-69	169	156	144	125	236	219	201	17		
Ā	70-79	236	219	201	175	304	281	259	22		
	>80	338	313	288	250	338	313	288	25		
BMI	30-35 kg/m ²										
	-	< 30	30-45	45-60	>60	< 30	30-45	45-60	>6		
	<60	76	70	65	56	127	117	108	94		
Age	60-69	127	117	108	94	177	164	151	13		
Ă	70-79	177	164	151	131	228	211	194	16		
	>80	253	234	216	188	253	234	216	18		
BMI	35-40 kg/m ²										
	-	<30	30-45	45-60	>60	<30	30-45	45-60	>6		
	<60	71	66	60	53	118	109	101	88		
Age	60-69	118	109	101	88	165	153	141	12		
Ā	70-79	165	153	141	123	213	197	181	15		
	>80	236	219	201	175	236	219	201	17		
вм	I >40 kg/m ²										
		<30	30-45	45-60	>60	< 30	30-45	45-60	>6		
	<60	61	56	52	45	101	94	86	75		
Age	60-69	101	94	86	75	142	131	121	10		
4	70-79	142	131	121	105	182	169	155	13		
	>80	203	188	173	150	203	188	173	15		

3.

Table 2. Cut-off values for the diagnosis of	HF adjusted for: age, sex, BM	II, renal dysfunction, AF or flutter.

			М	EN			wo	MEN				
	Cut-off values	<i>for atria</i> eGl										
	-	eG	eGFR (mL/min/1.73 m ²)									
BM	11 <30 kg/m ²											
	60	<30	30-45	45-60	>60	< 30	30-45	45-60	>60			
	<60	203	188	173	150	338	313	288	250			
Age	60-69	338	313	288	250	473	438	403	350			
	70-79	473	438	403	350	608	563	518	450			
	>80	675	625	575	500	675	625	575	500			
РМІ	30-35 kg/m ²											
Бгп	50-55 kg/m	<30	30-45	45-60	>60	<30	30-45	45-60	>60			
	<60	152	141	129	113	253	234	216	188			
e	60-69	253	234	216	188	354	328	302	263			
Age	70-79	354	328	302	263	456	422	388	338			
	>80	506	469	431	375	506	469	431	375			
BMI	BMI 35-40 kg/m ²											
	<u> </u>	<30	30-45	45-60	>60	< 30	30-45	45-60	>60			
	<60	142	131	121	105	236	219	201	175			
ge	60-69	236	219	201	175	331	306	282	245			
Age	70-79	331	306	282	245	425	394	362	315			
	>80	473	438	403	350	473	438	403	350			
BM	11 >40 kg/m ²											
		<30	30-45	45-60	>60	< 30	30-45	45-60	>60			
	<60	122	113	104	90	203	188	173	150			
Age	60-69	203	188	173	150	284	263	242	210			
4	70-79	284	263	242	210	365	338	311	270			
	>80	405	375	345	300	405	375	345	300			
			М				WO	MEN				
C	ut-off values fo		fibrillatio	on ≤90 b	-				2)			
				on ≤90 b	-	eG	WO iFR (mL/n		m²)			
	ut-off values fo II <30 kg/m ²	eG	<mark>fibrillatio</mark> FR (mL/n	<mark>on ≤90 b</mark> nin/1.73 i	m²)		iFR (mL/n	nin/1.73 i	-			
	11 <30 kg/m ²	eG <30	<mark>fibrillatio</mark> FR (mL/n 30-45	<mark>on ≤90 b</mark> nin/1.73 n 45-60	m²) >60	< 30	FR (mL/n 30-45	nin/1.73 45-60	>60			
BM	II <30 kg/m ² <60	eG < 30 152	fibrillatio FR (mL/n 30-45 141	on ≤90 b _i nin/1.73 n 45-60 129	n²) > 60 113	< 30 253	FR (mL/n 30-45 234	nin/1.73 45-60 216	> 60 188			
	II <30 kg/m ² <60 60-69	eG < 30 152 253	Fibrillatio FR (mL/n 30-45 141 234	n ≤90 b nin/1.73 45-60 129 216	m²) > 60 113 188	< 30 253 354	FR (mL/n 30-45 234 328	1071.73 45-60 216 302	> 60 188 263			
BM	II < 30 kg/m ² <60 60-69 70-79	eG < 30 152 253 354	FR (mL/n 30-45 141 234 328	on ≤90 b hin/1.73 c 45-60 129 216 302	n²) > 60 113 188 263	< 30 253 354 456	FR (mL/n 30-45 234 328 422	45-60 216 302 388	> 60 188 263 338			
BM	II <30 kg/m ² <60 60-69	eG < 30 152 253	Fibrillatio FR (mL/n 30-45 141 234	n ≤90 b nin/1.73 45-60 129 216	m²) > 60 113 188	< 30 253 354	FR (mL/n 30-45 234 328	1071.73 45-60 216 302	> 60 188 263			
BW Age	II < 30 kg/m² <60 60-69 70-79 >80	eG < 30 152 253 354	FR (mL/n 30-45 141 234 328	on ≤90 b hin/1.73 c 45-60 129 216 302	n²) > 60 113 188 263	< 30 253 354 456	FR (mL/n 30-45 234 328 422	45-60 216 302 388	> 60 188 263 338			
BW Age	II < 30 kg/m ² <60 60-69 70-79	eG < 30 152 253 354	FR (mL/n 30-45 141 234 328	on ≤90 b hin/1.73 c 45-60 129 216 302	n²) > 60 113 188 263	< 30 253 354 456	FR (mL/n 30-45 234 328 422	45-60 216 302 388	> 60 188 263 338			
BW Age	II < 30 kg/m² <60 60-69 70-79 >80	eG < 30 152 253 354 506	FR (mL/n 30-45 141 234 328 469	45-60 129 216 302 431	n²) >60 113 188 263 375	< 30 253 354 456 506	30-45 234 328 422 469	45-60 216 302 388 431	> 60 188 263 338 375			
вм əðe вмі	1l <30 kg/m² <60 60-69 70-79 >80 1 30-35 kg/m²	eG <30 152 253 354 506 <30	FR (mL/n 30-45 141 234 328 469 30-45	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	n²) >60 113 188 263 375 >60	<30 253 354 456 506 <30	FR (mL/n 30-45 234 328 422 469 30-45	45-60 216 302 388 431 45-60	> 60 188 263 338 375 > 60			
BW Age	1l < 30 kg/m² <60 60-69 70-79 >80 1 30-35 kg/m² <60 60-69 70-79	eG <30 152 253 354 506 <30 114 190 266	FR (mL/n 30-45 141 234 328 469 30-45 105 176 246	<pre></pre>	<pre>n²) >60 113 188 263 375 >60 84 141 197</pre>	<30 253 354 456 506 <30 190 266 342	FR (mL/n 30-45 234 328 422 469 30-45 176 246 316	45-60 216 302 388 431 45-60 162 226 291	>60 188 263 338 375 >60 141 197 253			
вм əðe вмі	nl <30 kg/m² <60 60-69 70-79 >80 1 30-35 kg/m² <60 60-69	eG <30 152 253 354 506 <30 114 190	FR (mL/n 30-45 141 234 328 469 30-45 105 176	<pre>m ≤ 90 b nin/1.73 m 45-60 129 216 302 431 45-60 97 162</pre>	<pre>n²) >60 113 188 263 375 >60 84 141</pre>	<30 253 354 456 506 <30 190 266	FR (mL/n 30-45 234 328 422 469 30-45 176 246	10071.73 45-60 216 302 388 431 45-60 162 226	 >60 188 263 338 375 >60 141 197 			
Age Age Mu	II <30 kg/m ² <60 60-69 70-79 >80 7 30-35 kg/m ² <60 60-69 70-79 >80	eG <30 152 253 354 506 <30 114 190 266	FR (mL/n 30-45 141 234 328 469 30-45 105 176 246	<pre></pre>	<pre>n²) >60 113 188 263 375 >60 84 141 197</pre>	<30 253 354 456 506 <30 190 266 342	FR (mL/n 30-45 234 328 422 469 30-45 176 246 316	45-60 216 302 388 431 45-60 162 226 291	>60 188 263 338 375 >60 141 197 253			
Age Age Mu	1l < 30 kg/m² <60 60-69 70-79 >80 1 30-35 kg/m² <60 60-69 70-79	eG <30 152 253 354 506 <30 114 190 266 380	FR (mL/n 30-45 141 234 328 469 30-45 105 176 246 352	45-60 129 216 302 431 45-60 97 162 226 323	<pre>n²) >60 113 188 263 375 >60 84 141 197 281</pre>	<30 253 354 456 506 <30 190 266 342 380	FR (mL/n 30-45 234 328 422 469 30-45 176 246 316 352	1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007	>60 188 263 338 375 >60 141 197 253 281			
Age Age Mu	II < 30 kg/m ² <60 60-69 70-79 >80 7 30-35 kg/m ² <60 60-69 70-79 >80 7 35-40 kg/m ²	eGi <30 152 253 354 506 <30 114 190 266 380 <30	FR (mL/n 30-45 141 234 328 469 30-45 105 176 246 352 30-45	<pre>90 b hin/1.73 c 45-60 129 216 302 431 45-60 97 162 226 323 45-60</pre>	n²) >60 113 188 263 375 >60 84 141 197 281 >60	<30 253 354 456 506 <30 190 266 342 380 <30	FR (mL/n 30-45 234 328 422 469 30-45 176 246 316 352 30-45	1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007 1007	 >60 188 263 338 375 >60 141 197 253 281 >60 			
вм вми вми вми	II < 30 kg/m ² <60 60-69 70-79 >80 7 30-35 kg/m ² <60 60-69 70-79 >80 7 35-40 kg/m ² <60	<pre>eGi <30 152 253 354 506 <30 114 190 266 380 <30 106</pre>	FR (mL/n 30-45 141 234 328 469 30-45 105 176 246 352 30-45 98	<pre>m ≤90 b hin/1.73 c 45-60 129 216 302 431 45-60 97 162 226 323 45-60 91</pre>	n²) >60 113 188 263 375 >60 84 141 197 281 >60 79	<30 253 354 456 506 <30 190 266 342 380 <30 177	FR (mL/n 30-45 234 328 422 469 30-45 176 246 316 352 30-45 164	111/1.73 45-60 216 302 388 431 45-60 162 226 291 323 45-60 151	 >60 188 263 338 375 >60 141 197 253 281 >60 131 			
вм вми вми вми	<i>II < 30 kg/m</i> ² <60 60-69 70-79 >80 <i>J 30-35 kg/m</i> ² <60 60-69 70-79 >80 <i>J 35-40 kg/m</i> ² <60 60-69	eG <30 152 253 354 506 <30 114 190 266 380 <30 106 177	FR (mL/n 30-45 141 234 328 469 30-45 105 176 246 352 30-45 98 164	<pre>m ≤90 b hin/1.73 c 45-60 129 216 302 431 45-60 97 162 226 323 45-60 91 151</pre>	<pre>n²) >60 113 188 263 375 >60 84 141 197 281 >60 79 131</pre>	<30 253 354 456 506 <30 190 266 342 380 <30 177 248	FR (mL/n 30-45 234 328 422 469 30-45 176 246 316 352 30-45 164 230	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1	 >60 188 263 338 375 >60 141 197 253 281 >60 131 184 			
Age Age Mu	1l <30 kg/m ² <60 60-69 70-79 >80 30-35 kg/m ² <60 60-69 70-79 >80 35-40 kg/m ² <60 60-69 70-79	 eG <30 152 253 354 506 <30 114 190 266 380 <30 <30 106 177 248 	FR (mL/n 30-45 141 234 328 469 30-45 105 176 246 352 30-45 98 164 230	<pre>90 b 100 ≤ 90 b 129 216 302 431 45-60 97 162 226 323 45-60 91 151 211</pre>	<pre>n²) >60 113 188 263 375 >60 84 141 197 281 >60 79 131 184</pre>	<30 253 354 456 506 *30 190 266 342 380 *30 177 248 319	FR (mL/n 30-45 234 328 422 469 30-45 176 246 316 352 30-45 164 230 295	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1	 >60 188 263 338 375 >60 141 197 253 281 >60 131 184 236 			
вм вми вми вми	<i>II < 30 kg/m</i> ² <60 60-69 70-79 >80 <i>J 30-35 kg/m</i> ² <60 60-69 70-79 >80 <i>J 35-40 kg/m</i> ² <60 60-69	eG <30 152 253 354 506 <30 114 190 266 380 <30 106 177	FR (mL/n 30-45 141 234 328 469 30-45 105 176 246 352 30-45 98 164	<pre>m ≤90 b hin/1.73 c 45-60 129 216 302 431 45-60 97 162 226 323 45-60 91 151</pre>	<pre>n²) >60 113 188 263 375 >60 84 141 197 281 >60 79 131</pre>	<30 253 354 456 506 <30 190 266 342 380 <30 177 248	FR (mL/n 30-45 234 328 422 469 30-45 176 246 316 352 30-45 164 230	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1	 >60 188 263 338 375 >60 141 197 253 281 >60 131 184 			
Age Age Age Age	II < 30 kg/m ² <60 60-69 70-79 >80 7 30-35 kg/m ² <60 60-69 70-79 >80 7 35-40 kg/m ² <60 60-69 70-79 >80	 eG <30 152 253 354 506 <30 114 190 266 380 <30 <30 106 177 248 	FR (mL/n 30-45 141 234 328 469 30-45 105 176 246 352 30-45 98 164 230	<pre>90 b 100 ≤ 90 b 129 216 302 431 45-60 97 162 226 323 45-60 91 151 211</pre>	<pre>n²) >60 113 188 263 375 >60 84 141 197 281 >60 79 131 184</pre>	<30 253 354 456 506 *30 190 266 342 380 *30 177 248 319	FR (mL/n 30-45 234 328 422 469 30-45 176 246 316 352 30-45 164 230 295	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1	 >60 188 263 338 375 >60 141 197 253 281 >60 131 184 236 			
Age Age Age Age	1l <30 kg/m ² <60 60-69 70-79 >80 30-35 kg/m ² <60 60-69 70-79 >80 35-40 kg/m ² <60 60-69 70-79	 eG <30 152 253 354 506 <30 114 190 266 380 <30 106 177 248 354 	FR (mL/n 30-45 141 234 328 469 30-45 105 176 246 352 30-45 98 164 230 328	<pre>n ≤90 b hin/1.73 c 45-60 129 216 302 431 45-60 97 162 226 323 45-60 91 151 211 302</pre>	<pre>n²) >60 113 188 263 375 >60 84 141 197 281 >60 79 131 184 263</pre>	<30 253 354 456 506 *30 190 266 342 380 *30 177 248 319 354	FR (mL/n 30-45 234 328 422 469 30-45 176 246 316 352 30-45 164 230 295 328	hin/1.73 h 45-60 216 302 388 431 45-60 162 226 291 323 45-60 151 211 272 302	 >60 188 263 338 375 >60 141 197 253 281 >60 131 184 236 263 			
Age Age Age Age	II < 30 kg/m ² <60 60-69 70-79 >80 7 30-35 kg/m ² <60 60-69 70-79 >80 7 35-40 kg/m ² <60 60-69 70-79 >80 7 35-40 kg/m ²	<pre>eGi <30 152 253 354 506 <30 114 190 266 380 <30 106 177 248 354 <30</pre>	FR (mL/n 30-45 141 234 328 469 30-45 105 176 246 352 30-45 98 164 230 328 30-45	<pre>n ≤90 b hin/1.73 c 45-60 129 216 302 431 45-60 97 162 226 323 45-60 91 151 211 302 45-60</pre>	n²) >60 113 188 263 375 >60 84 141 197 281 >60 79 131 184 263 >60 ×60	<30 253 354 456 506 *30 190 266 342 380 *30 177 248 319 354 *30	FR (mL/n 30-45 234 328 422 469 30-45 176 246 316 352 30-45 164 230 295 328 30-45	hin/1.73 min/1.73	 >60 188 263 338 375 >60 141 197 253 281 >60 131 184 236 263 >60 			
BW 90e Age Age BWI BW	II < 30 kg/m ² <60 60-69 70-79 >80 7 30-35 kg/m ² <60 60-69 70-79 >80 7 35-40 kg/m ² <60 60-69 70-79 >80 7 35-40 kg/m ² <60	<pre>eGi <30 152 253 354 506 <30 114 190 266 380 <30 106 177 248 354 <30 91</pre>	FR (mL/n 30-45 141 234 328 469 30-45 105 176 246 352 30-45 98 164 230 328 30-45 84	<pre>n ≤90 b hin/1.73 c 45-60 129 216 302 431 45-60 97 162 226 323 45-60 91 151 211 302 45-60 78</pre>	<pre>n²) >60 113 188 263 375 >60 84 141 197 281 >60 79 131 184 263 >60 68</pre>	<30 253 354 456 506 *30 190 266 342 380 *30 177 248 319 354 *30 152	FR (mL/n 30-45 234 328 422 469 30-45 176 246 316 352 30-45 164 230 295 328 30-45 141	hin/1.73 min/1.73	 >60 188 263 338 375 >60 141 197 253 281 >60 131 184 236 263 >60 113 			
Age Age Age Age	II < 30 kg/m ² <60 60-69 70-79 >80 7 30-35 kg/m ² <60 60-69 70-79 >80 7 35-40 kg/m ² <60 60-69 70-79 >80 7 35-40 kg/m ² <60 60-69	<pre>eGi <30 152 253 354 506 <30 114 190 266 380 <30 106 177 248 354 <30 91 152</pre>	FR (mL/n 30-45 141 234 328 469 30-45 105 176 246 352 30-45 98 164 230 328 30-45 84 141	<pre>m ≤90 by hin/1.73 c 129 216 302 431 45-60 97 162 226 323 45-60 91 151 211 302 45-60 78 129</pre>	<pre>n²) >60 113 188 263 375 >60 84 141 197 281 >60 79 131 184 263 >60 68 113</pre>	<30 253 354 456 506 *30 190 266 342 380 *30 177 248 319 354 *30 152 213	FR (mL/n 30-45 234 328 422 469 30-45 176 246 316 352 30-45 164 230 295 328 30-45 141 197	hin/1.73 min/1.73	 >60 188 263 338 375 >60 141 197 253 281 >60 131 184 236 263 >60 113 158 			
BW 90e Age Age BWI BW	II < 30 kg/m ² <60 60-69 70-79 >80 7 30-35 kg/m ² <60 60-69 70-79 >80 7 35-40 kg/m ² <60 60-69 70-79 >80 7 35-40 kg/m ² <60	<pre>eGi <30 152 253 354 506 <30 114 190 266 380 <30 106 177 248 354 <30 91</pre>	FR (mL/n 30-45 141 234 328 469 30-45 105 176 246 352 30-45 98 164 230 328 30-45 84	<pre>n ≤90 b hin/1.73 c 45-60 129 216 302 431 45-60 97 162 226 323 45-60 91 151 211 302 45-60 78</pre>	<pre>n²) >60 113 188 263 375 >60 84 141 197 281 >60 79 131 184 263 >60 68</pre>	<30 253 354 456 506 *30 190 266 342 380 *30 177 248 319 354 *30 152	FR (mL/n 30-45 234 328 422 469 30-45 176 246 316 352 30-45 164 230 295 328 30-45 141	hin/1.73 min/1.73	 >60 188 263 338 375 >60 141 197 253 281 >60 131 184 236 263 >60 113 			

13

- eGFR <30 mL/min/1.73 m², NT-proBNP cut-off increased by 35%;
- eGFR 30-45 mL/min/1.73 m², NT-proBNP cut-off increased by 25%;
- eGFR 45-60 mL/min/1.73 m², NT-proBNP cut-off increased by 15%.
- BMI 30-35 kg/m², NT-proBNP cut-off reduced by 25%;
- BMI 35-40 kg/m², NT-proBNP cut-off reduced by 30%;
- BMI >40 kg/m², NT-proBNP cut-off reduced by 40%.
- For AF or flutter:
 - ventricular rate ≤90 bpm, NT-proBNP cut-off increased by 50%;
 - ventricular rate >90 bpm, NT-proBNP cut-off increased by 100%.

To facilitate the cut-off determination process, the standard baseline, age- and sex-adjusted cut-offs were multiplied by the upper referenced factors and stratified by the basal heart rhythm.²⁰ BMI – body mass index

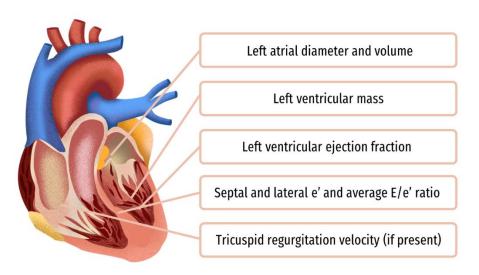


Figure 1. Aspects to consider when investigating cardiovascular disease.

Routine evaluation

Given the increased risk of developing HD in patients with diabetes, regular evaluation is recommended. The frequency of NT-proBNP evaluation depends on two main factors: NT-proBNP concentration and the presence of risk factors and/or symptoms of HD (Central Figure). For patients with diabetes without associated comorbidities and NT-proBNP levels below 125 pg/mL, a follow-up evaluation for HD is advised every two to three years. In cases where other risk factors are present (obesity, hypertension, CKD, coronary artery disease, smoking or HbA_{1c} above target) even if NT-proBNP is below 125 pg/mL, an annual assessment of NP levels is recommended.

In instances of elevated NT-proBNP concentrations, the NP levels and results of complementary exams should be taken into account to establish an appropriate follow-up plan. The frequency of evaluation should increase with rising NT-proBNP concentration, the severity of findings in complementary diagnostic testing, and a higher short-term risk of adverse events.

Implications for therapeutic approach

The identification of HD in patients with diabetes has important implications for clinical practice. For patients with HFpEF, sodium-glucose cotransporter 2 inhibitors (SGLT2i) are proven to reduce HF hospitalizations, and treatment with spironolactone or sacubitril/valsartan can be considered.³ For HFrEF, the recommendations from guideline-directed medical therapy for patients with or without diabetes are similar.^{3, 6} QYEsuadruple therapy is recommended to reduce the risk of HF hospitalization and death: angiotensin receptor–neprilysin inhibitors (ARNI)/ACE-I as sacubitril/valsartan, mineralocorticoid receptor antagonists as spironolactone, beta-blockers, and SGLT2i as dapagliflozin, empagliflozin, or sotagliflozin.^{6, 46} Diuretics are recommended for both HFpEF and HFrEF when there are signs and/or symptoms of fluid overload.

For patients with elevated levels of NT-proBNP levels without criteria for the diagnosis of HF or other cardiac disease, the evidence to guide the clinical practice is scarce. The PONTIAC trial supports the initiation and up-titration of RAS antagonists and beta-blockers in patients with diabetes with elevated NT-proBNP (>125 pg/mL) but free of cardiac disease.¹⁷ SGLT2is have shown reductions of HF events in patients with diabetes even in the absence of previous diagnosis of HF and their use must be strongly considered when NP levels are elevated.⁴⁸ GLP-1 receptors have been shown to decrease the risk of HF events in patients with diabetes with diabetes without previous diagnosis of HF,⁴⁹ and their use must be considered in those without reduced left ventricle ejection fraction.⁵⁰ In all cases, promotion of healthy lifestyle behaviors and intensive management of cardiovascular risk factors is recommended.⁵¹

V. CONCLUSIONS

Heart disease in patients with diabetes is often overlooked or diagnosed at an advanced stage. This paper presents the consensus position of the SPEDM, SPC, NEDM-SPMI and APMGF on the use of NPs, particularly NT-proBNP, for the diagnosis of HD in patients with diabetes, even in asymptomatic cases, to assess risk and monitor progression. Early diagnosis improves patient outcomes through prognosis-modifying interventions and lifestyle changes, reducing morbidity and mortality. This paper also highlights the critical role of primary care in screening patients with diabetes for HD using NPs, providing practical guidance to improve care, cardiovascular prevention, and quality of life for people with diabetes in Portugal.

Key points of consensus include:

- NT-proBNP quantification is recommended for all patients with diabetes over 50, or under 50 if risk factors and/or comorbidities are present.
- Adjusted rule-out and rule-in values for NT-proBNP for age, sex and risk factors, are provided in Table 2.

- For elevated NT-proBNP, complementary diagnostic tests such as electrocardiography and echocardiography are recommended, followed by an investigation for cardiovascular disease.
- Routine re-evaluations are recommended when NT-proBNP is below 125 pg/mL and HD is not suspected, occurring every two to three years for patients with diabetes without risk factors and yearly for those with risk factors or comorbidities.

Ethics in publishing

1. Does your research involve experimentation on animals?:

No

2. Does your study include human subjects?:

No

3. Does your study include a clinical trial?:

No

4. Are all data shown in the figures and tables also shown in the text of the Results section and

discussed in the Conclusions?:

Yes

Acknowledgments

The authors would like to thank Carla Gomes and Mafalda Costa (W4Research) for the writing support and Roche Diagnostic Portugal for funding.

Conflicts of interest

The authors declare no conflicts of interest.

REFERENCES

1.InternationalDiabetesFederation.DiabetesAtlasAvailableat:https://diabetesatlas.org/data/en/world/ (Accessed on November 2023).

2. Sociedade Portuguesa de Diabetologia. Diabetes: Factos e Números – O Ano de 2019, 2020 e 2021
- Relatório Anual do Observatório Nacional da Diabetes. 2023.

3. Pop-Busui R, Januzzi JL, Bruemmer D, et al. Heart Failure: An Underappreciated Complication of Diabetes. A Consensus Report of the American Diabetes Association. Diabetes Care. 2022; 45: 1670-1690. DOI: 10.2337/dci22-0014.

4. Kannel WB and McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA. 1979; 241: 2035-2038. DOI: 10.1001/jama.241.19.2035.

5. Thrainsdottir IS, Aspelund T, Hardarson T, et al. Glucose abnormalities and heart failure predict poor prognosis in the population-based Reykjavik Study. Eur J Cardiovasc Prev Rehabil. 2005; 12: 465-471. DOI: 10.1097/01.hjr.0000173105.91356.4d.

6. Marx N, Federici M, Schutt K, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J. 2023; 44: 4043-4140. DOI: 10.1093/eurheartj/ehad192.

7. Dunlay SM, Givertz MM, Aguilar D, et al. Type 2 Diabetes Mellitus and Heart Failure: A Scientific Statement From the American Heart Association and the Heart Failure Society of America: This statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation. 2019; 140: e294-e324. DOI: 10.1161/CIR.0000000000691.

8. Dillmann WH. Diabetic Cardiomyopathy. Circ Res. 2019; 124: 1160-1162. DOI: 10.1161/CIRCRESAHA.118.314665.

9. Fonseca C, Bettencourt P, Brito D, et al. NT-proBNP for heart failure diagnosis in Primary Care: Costs or savings? A budget impact study. Rev Port Cardiol. 2022; 41: 183-193. DOI: 10.1016/j.repc.2021.03.009.

10. Fang M, Wang D, Tang O, et al. Subclinical Cardiovascular Disease in US Adults With and Without Diabetes. J Am Heart Assoc. 2023; 12: e029083. DOI: 10.1161/JAHA.122.029083.

11. Huelsmann M, Neuhold S, Strunk G, et al. NT-proBNP has a high negative predictive value to ruleout short-term cardiovascular events in patients with diabetes mellitus. Eur Heart J. 2008; 29: 2259-2264. DOI: 10.1093/eurheartj/ehn334.

12. Ceriello A, Catrinoiu D, Chandramouli C, et al. Heart failure in type 2 diabetes: current perspectives on screening, diagnosis and management. Cardiovasc Diabetol. 2021; 20: 218. DOI: 10.1186/s12933-021-01408-1.

13. Groenewegen A, Zwartkruis VW, Rienstra M, et al. Improving early diagnosis of cardiovascular disease in patients with type 2 diabetes and COPD: protocol of the RED-CVD cluster randomised diagnostic trial. BMJ Open. 2021; 11: e046330. DOI: 10.1136/bmjopen-2020-046330.

14. Facciola A, Visalli G, D'Andrea G, et al. Prevention of cardiovascular diseases and diabetes: importance of a screening program for the early detection of risk conditions in a target population. J Prev Med Hyg. 2021; 62: E934-E942. DOI: 10.15167/2421-4248/jpmh2021.62.4.2360.

15. Huo JL, Feng Q, Pan S, et al. Diabetic cardiomyopathy: Early diagnostic biomarkers, pathogenetic mechanisms, and therapeutic interventions. Cell Death Discov. 2023; 9: 256. DOI: 10.1038/s41420-023-01553-4.

16. Ledwidge M, Gallagher J, Conlon C, et al. Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA. 2013; 310: 66-74. DOI: 10.1001/jama.2013.7588.

17. Huelsmann M, Neuhold S, Resl M, et al. PONTIAC (NT-proBNP selected prevention of cardiac events in a population of diabetic patients without a history of cardiac disease): a prospective randomized controlled trial. J Am Coll Cardiol. 2013; 62: 1365-1372. DOI: 10.1016/j.jacc.2013.05.069.

18. Berezin AE and Berezin AA. Biomarkers in Heart Failure: From Research to Clinical Practice. Ann Lab Med. 2023; 43: 225-236. DOI: 10.3343/alm.2023.43.3.225.

19. Tarnow L, Gall MA, Hansen BV, et al. Plasma N-terminal pro-B-type natriuretic peptide and mortality in type 2 diabetes. Diabetologia. 2006; 49: 2256-2262. DOI: 10.1007/s00125-006-0359-4.

20. Bayes-Genis A, Docherty KF, Petrie MC, et al. Practical algorithms for early diagnosis of heart failure and heart stress using NT-proBNP: A clinical consensus statement from the Heart Failure Association of the ESC. Eur J Heart Fail. 2023. DOI: 10.1002/ejhf.3036.

21. Bhalla MA, Chiang A, Epshteyn VA, et al. Prognostic role of B-type natriuretic peptide levels in patients with type 2 diabetes mellitus. J Am Coll Cardiol. 2004; 44: 1047-1052. DOI: 10.1016/j.jacc.2004.05.071.

22. Boonman-de Winter LJ, Rutten FH, Cramer MJ, et al. Efficiently screening heart failure in patients with type 2 diabetes. Eur J Heart Fail. 2015; 17: 187-195. DOI: 10.1002/ejhf.216.

23. Fringu FI, Sitar-Taut AV, Caloian B, et al. The Role of Nt Pro-Bnp in the Evaluation of Diabetic Patients with Heart Failure. Acta Endocrinol (Buchar). 2020; 16: 183-191. DOI: 10.4183/aeb.2020.183.

24. Scirica BM, Braunwald E, Raz I, et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation. 2014; 130: 1579-1588. DOI: 10.1161/CIRCULATIONAHA.114.010389.

25. Weber M and Hamm C. Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart. 2006; 92: 843-849. DOI: 10.1136/hrt.2005.071233.

26. Myhre PL, Prescott MF, Murphy SP, et al. Early B-Type Natriuretic Peptide Change in HFrEF Patients Treated With Sacubitril/Valsartan: A Pooled Analysis of EVALUATE-HF and PROVE-HF. JACC Heart Fail. 2022; 10: 119-128. DOI: 10.1016/j.jchf.2021.09.007.

27. Segar MW, Khan MS, Patel KV, et al. Incorporation of natriuretic peptides with clinical risk scores to predict heart failure among individuals with dysglycaemia. Eur J Heart Fail. 2022; 24: 169-180. DOI: 10.1002/ejhf.2375.

28. Bruno G, Landi A, Barutta F, et al. N-terminal probrain natriuretic peptide is a stronger predictor of cardiovascular mortality than C-reactive protein and albumin excretion rate in elderly patients with type 2 diabetes: the Casale Monferrato population-based study. Diabetes Care. 2013; 36: 2677-2682. DOI: 10.2337/dc13-0353.

29. Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022; 145: e895-e1032. DOI: 10.1161/CIR.00000000001063.

30. Bayes-Genis A, Lloyd-Jones DM, van Kimmenade RR, et al. Effect of body mass index on diagnostic and prognostic usefulness of amino-terminal pro-brain natriuretic peptide in patients with acute dyspnea. Arch Intern Med. 2007; 167: 400-407. DOI: 10.1001/archinte.167.4.400.

31. O'Donoghue M, Kenney P, Oestreicher E, et al. Usefulness of aminoterminal pro-brain natriuretic peptide testing for the diagnostic and prognostic evaluation of dyspneic patients with diabetes mellitus seen in the emergency department (from the PRIDE Study). Am J Cardiol. 2007; 100: 1336-1340. DOI: 10.1016/j.amjcard.2007.06.020.

32. Luchner A, Behrens G, Stritzke J, et al. Long-term pattern of brain natriuretic peptide and N-terminal pro brain natriuretic peptide and its determinants in the general population: contribution of age, gender, and cardiac and extra-cardiac factors. Eur J Heart Fail. 2013; 15: 859-867. DOI: 10.1093/eurjhf/hft048.

33. Welsh P, Campbell RT, Mooney L, et al. Reference Ranges for NT-proBNP (N-Terminal Pro-B-Type Natriuretic Peptide) and Risk Factors for Higher NT-proBNP Concentrations in a Large General Population Cohort. Circ Heart Fail. 2022; 15: e009427. DOI: 10.1161/CIRCHEARTFAILURE.121.009427.

34. Srisawasdi P, Vanavanan S, Charoenpanichkit C, et al. The effect of renal dysfunction on BNP, NTproBNP, and their ratio. Am J Clin Pathol. 2010; 133: 14-23. DOI: 10.1309/AJCP60HTPGIGFCNK.

35. Ma H, Zhou J, Zhang M, et al. The Diagnostic Accuracy of N-Terminal Pro-B-Type Natriuretic Peptide and Soluble ST2 for Heart Failure in Chronic Kidney Disease Patients: A Comparative Analysis. Med Sci Monit. 2023; 29: e940641. DOI: 10.12659/MSM.940641.

36. Sramko M, Wichterle D, Melenovsky V, et al. Independent effect of atrial fibrillation on natriuretic peptide release. Clin Res Cardiol. 2019; 108: 142-149. DOI: 10.1007/s00392-018-1332-1.

37. Santema BT, Chan MMY, Tromp J, et al. The influence of atrial fibrillation on the levels of NT-proBNP versus GDF-15 in patients with heart failure. Clin Res Cardiol. 2020; 109: 331-338. DOI: 10.1007/s00392-019-01513-y.

38. Madamanchi C, Alhosaini H, Sumida A, et al. Obesity and natriuretic peptides, BNP and NT-proBNP: mechanisms and diagnostic implications for heart failure. Int J Cardiol. 2014; 176: 611-617. DOI: 10.1016/j.ijcard.2014.08.007.

39. Kozhuharov N, Martin J, Wussler D, et al. Clinical effect of obesity on N-terminal pro-B-type natriuretic peptide cut-off concentrations for the diagnosis of acute heart failure. Eur J Heart Fail. 2022; 24: 1545-1554. DOI: 10.1002/ejhf.2618.

40. Herrmann JJ, van Kimmenade RRJ and Gommans DHF. What Is the Effect of Obesity on the Natriuretic Peptide Pathway? JACC Heart Fail. 2021; 9: 697. DOI: 10.1016/j.jchf.2021.05.022.

41. Wang TJ, Larson MG, Levy D, et al. Impact of obesity on plasma natriuretic peptide levels. Circulation. 2004; 109: 594-600. DOI: 10.1161/01.CIR.0000112582.16683.EA.

42. Nichols GA, Gullion CM, Koro CE, et al. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care. 2004; 27: 1879-1884. DOI: 10.2337/diacare.27.8.1879.

43. Ceia F, Fonseca C, Mota T, et al. Prevalence of chronic heart failure in Southwestern Europe: the EPICA study. Eur J Heart Fail. 2002; 4: 531-539. DOI: 10.1016/s1388-9842(02)00034-x.

44. Rawshani A, Rawshani A, Franzen S, et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2018; 379: 633-644. DOI: 10.1056/NEJMoa1800256.

45. Piche ME, Tchernof A and Despres JP. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ Res. 2020; 126: 1477-1500. DOI: 10.1161/CIRCRESAHA.120.316101.

46. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021; 42: 3599-3726. DOI: 10.1093/eurheartj/ehab368.

47. Kittleson MM, Panjrath GS, Amancherla K, et al. 2023 ACC Expert Consensus Decision Pathway on Management of Heart Failure With Preserved Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2023; 81: 1835-1878. DOI: 10.1016/j.jacc.2023.03.393.

48. Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019; 393: 31-39. DOI: 10.1016/S0140-6736(18)32590-X.

49. Ferreira JP, Saraiva F, Sharma A, et al. Glucagon-like peptide 1 receptor agonists in patients with type 2 diabetes with and without chronic heart failure: A meta-analysis of randomized placebo-controlled outcome trials. Diabetes Obes Metab. 2023; 25: 1495-1502. DOI: 10.1111/dom.14997.

50. Ferreira JP, Sharma A, Butler J, et al. Glucagon-like peptide-1 receptor agonists across the spectrum of heart failure. J Clin Endocrinol Metab. 2023. DOI: 10.1210/clinem/dgad398.

51. American Diabetes Association Professional Practice C. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes-2024. Diabetes Care. 2024; 47: S179-S218. DOI: 10.2337/dc24-S010.

19

			М	EN			WO	MEN	
	Cut-off values for normal								
		eC	GFR (mL/n	nin/1.73 n	1 ²)		eGFR (mL/r	min/1.73 m²)	
	BMI <30 kg/m ²								
		<30	30-45	45-60	>60	<30	30-45	45-60	>60
	<60	101	94	86	75	169	156	144	125
Age	60-69	169	156	144	125	236	219	201	175
4	70-79	236	219	201	175	304	281	259	225
	>80	338	313	288	250	338	313	288	250
	BMI 30-35								
	kg/m^2								
	Kg/III	<30	30-45	45-60	>60	<30	30-45	45-60	>60
	<60	76	70	65	56	127	117	108	94
e	60-69	127	117	108	94	177	164	151	131
Age	70-79	177	164	151	131	228	211	194	169
	>80	253	234	216	188	253	234	216	188
			-						
	BMI 35-40								
	kg/m²								
		<30	30-45	45-60	>60	<30	30-45	45-60	>60
	<60	71	66	60	53	118	109	101	88
Age	60-69	118	109	101	88	165	153	141	123
A	70-79	165	153	141	123	213	197	181	158
	>80	236	219	201	175	236	219	201	175
	BMI >40 kg/m ²								
		<30	30-45	45-60	>60	<30	30-45	45-60	>60
	<60	61	56	52	45	101	94	86	75
Age	60-69	101	94	86	75	142	131	121	105
A	70-79	142	131	121	105	182	169	155	135
	>80	203	188	173	150	203	188	173	150
			М	EN			WO	MEN	
	Cut-off values for atrial f	fibrillation	>90 bpm						
		eC	GFR (mL/n	nin/1.73 n	1 ²)		eGFR (mL/r	min/1.73 m²)	
	BMI <30 kg/m ²								
		<30	30-45	45-60	>60	<30	30-45	45-60	>60
	<60	203	188	173	150	338	313	288	250
Age	60-69	338	313	288	250	473	438	403	350
4	70-79	473	438	403	350	608	563	518	450
	>80	675	625	575	500	675	625	575	500
	DMI 20. 25								
	BMI 30-35 kg/m²								
	кулп	<30	30-45	45-60	>60	<30	30-45	45-60	>60
	<60	<50 152	141	43-00 129	>00 113	253	234	216	188
دD	60-69	253	234	216	188	354	328	302	263
Age	70-79	354	328	302	263	456	422	388	338
	>80	506	469	431	375	506	469	431	375
		200			2.2	500			2.5
	BMI 35-40								
	kg/m²								
		<30	30-45	45-60	>60	<30	30-45	45-60	>60

20

b60-69236219201175331306470-79331306282245425394	201175282245
	362 315
>80 473 438 403 350 473 438	403 350
BMI >40 kg/m ²	
	5-60 >60
	173 150
	242 210
D	311 270
	345 300
MEN WOMEN	
Cut-off values for atrial fibrillation ≤ 90 bpm	
eGFR (mL/min/1.73 m ²) eGFR (mL/min/1	L.73 m ²)
BMI <30 kg/m ²	,
	5-60 >60
<60 152 141 129 113 253 234	216 188
<u>⊎</u> 60-69 253 234 216 188 354 328	302 263
	388 338
>80 506 469 431 375 506 469	431 375
BMI 30-35	
kg/m²	
	\$5-60 >60
	162 141
v 60-69 190 176 162 141 266 246 V 70-79 266 246 226 197 342 316	226 197
	291 253
>80 380 352 323 281 380 352	323 281
BMI 35-40 kg/m ²	
	5-60 >60
	151 131
	211 184
	272 236
	302 263
	203
BMI >40 kg/m ²	
	5-60 >60
	129 113
0	181 158
	233 203
>80 304 281 259 225 304 281	259 225