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The goals of the Association for Molecular Pathology Clinical Practice Committee’s Pharmacogenomics
(PGx) Working Group are to define the key attributes of pharmacogenetic alleles recommended for clinical
testing and a minimum set of variants that should be included in clinical PGx genotyping assays. This
document series provides recommendations for a minimum set of variant alleles (tier 1) and an extended
list of variant alleles (tier 2) that will aid clinical laboratories when designing assays for PGx testing. The
Association for Molecular Pathology PGx Working Group considered the functional impact of the variant
alleles, allele frequencies in multiethnic populations, the availability of reference materials, and other
technical considerations for PGx testing when developing these recommendations. The goal of this
Working Group is to promote standardization of PGx testing across clinical laboratories. This document

will focus on clinical DPYD PGx testing that may be applied to all dihydropyrimidine dehydrogenase
—related medications. These recommendations are not to be interpreted as prescriptive but to provide
a reference guide. (J Mol Diagn 2024, B: 1—13; https://doi.org/10.1016/].jmoldx.2024.05.015)

Clinical pharmacogenomics (PGx) tests can aid clinicians
with medication management based on a patient’s individ-
ual genetic profile, which is an increasingly adopted strategy
for implementing personalized medicine." However, previ-
ous studies have shown that available clinical PGx tests
have wide variability with the alleles they include,”” which
can range from interrogating a limited number of variants/
alleles in a pharmacogene to sequencing selected exons or
the entire coding region of a gene. This can lead to an in-
dividual’s genotype being reported as normal or negative for
the interrogated variants, although clinically relevant vari-
ants may still be present if not interrogated and may have
the effect of reducing clinical sensitivity and negative pre-
dictive value. Discrepancies in interpretation and imple-
mentation of PGx testing may result in inconsistent or
erroneous clinical management. Until recently, there has
been little effort to standardize the content or specific vari-
ants/alleles that should be included in clinical PGx tests.

To address this issue, the Association for Molecular Pa-
thology (AMP) PGx Working Group has developed a series
of documents that recommend a minimum set of variants to
include in clinical PGx assays to facilitate standardization
across laboratories and ensure that clinically relevant variant
alleles are included in clinical PGx assays. The previous
AMP PGx Working Group documents covered CYP2CI9,"
CYP2C9,” genes important for warfarin PGx testing,’
CYP2D6,” TPMTINUDTIS,” and CYP3A4/CYP3AS.”

This current document focuses on DPYD and is intended
to provide guidance to clinical laboratories and assay
manufacturers who develop, validate, and/or offer clinical
DPYD pharmacogenomic testing. Although the goal of this
document is specifically to aid in allele selection for targeted
genotyping assays, laboratories may also consider
sequencing the DPYD gene to cover the large number of
reportable variants associated with severe fluoropyrimidine-
related toxicity in patients with dihydropyrimidine
dehydrogenase (DPD) deficiency. However, these recom-
mendations are not intended for diagnostic DPYD genetic
testing of the autosomal recessive DPD deficiency disorder.
This document should be implemented together with other
relevant clinical guidelines, including those published by the
Clinical Pharmacogenetics Implementation Consortium

(CPIC) and the Dutch Pharmacogenetics Working Group
(DPWG), both of which focus primarily on the interpreta-
tion of PGx test results and therapeutic recommendations for
specific ~ drug-gene pairs  (https:/www.pharmgkb.org/
guidelineAnnotations, last accessed January 5, 2024).

The AMP PGx Working Group uses a two-tier strategy
for selection criteria in recommending PGx variants for
clinical testing.*” Briefly, tier 1 recommended variants are
those that meet the following criteria: i) have a well-
characterized effect on the function of the protein and/or
gene expression, ii) have an appreciable minor allele fre-
quency in a population/ancestral group, iii) have publicly
available reference materials (RMs), and iv) are technically
feasible for clinical laboratories to interrogate using standard
molecular testing methods. Tier 2 recommended variants
meet at least one but not all the tier 1 criteria. Tier 2 variants
may be reclassified to tier 1 if additional information or
RM(s) become available. Variants with unknown effect on
protein function or gene expression are not included in these
recommendations for clinical genotyping assays.

DPD and the DPYD Gene

DPD [NADP(+); other names include DPYD; EC:1.3.1.2] is
involved in the reversible reduction of uracil and thymine as
well as the chemotherapeutic drug 5-fluorouracil (5-FU). The
DPD protein is encoded by the DPYD gene, which is located
on chromosome 1p21.3, spans 843 kilobases in length, and
contains 23 exons.'””'” The DPD protein is expressed in
many tissues, with liver and peripheral blood having the
highest expression levels and enzymatic activity.'* Biallelic
loss-of-function variants in DPYD cause severe DPD defi-
ciency, which is a rare autosomal recessive disorder charac-
terized by thymine-uraciluria and other variable features,
including failure to thrive, microcephaly, seizures, and both
motor impairment and intellectual disability (Online Men-
delian Inheritance in Man number 274270, hittps.//omim.org/
clinicalSynopsis/274270, last accessed January 5, 2024).
Fluoropyrimidines, antimetabolite drugs including 5-FU,
capecitabine, and tegafur, are widely used to treat a variety
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of cancers.'” Both capecitabine and tegafur are prodrugs of
5-FU, which are metabolized to the active form through
several enzymatic reactions. The rate-limiting step of con-
version from 5-FU to inactive metabolites is catalyzed by
DPD. Individuals with decreased DPD activity are less able
to break down fluoropyrimidines to inactive metabolites,
thereby increasing exposure to active drug moieties.
Compromised DPD activity increases an individual’s risk of
experiencing  potentially  life-threatening  fluorouracil
toxicity, including bone marrow suppression, gastrointes-
tinal toxicity, and neurotoxicity (https://www.ncbi.nlm.nih.

gov/books/NBK385155 and https://fomim.org/
clinicalSynopsis/274270, last accessed January 5,
2024).">"°

Over 1598 sequence variants in the DPYD gene have
been identified (Genome Aggregation Database version
4.0.0),"” of which a selection is listed by the Pharmacogene
Variation Consortium (PharmVar; https://www.pharmvar.
org/gene/DPYD, last accessed January 5, 2024). Although
some variants have been characterized as having normal,
decreased, or no DPD enzyme activity, the functional and
clinical impacts remain uncertain for most of these
variants, especially those that are rare. DPYD variants
known to have pharmacogenomic significance were
historically described using star alleles or alternative
names [eg, *2A, haplotype B3 (HapB3)]; however, this
has recently transitioned toward using the standard Human
Genome Variation Society nomenclature (https://hgvs-
nomenclature.org/stable, last accessed May 6, 2024) as
the actionable variants are relevant whether found as part
of a larger haplotype or independently as rare variants. 5-
FU toxicity may also be observed in patients with partial
DPD deficiency, which has a frequency of approximately
3% to 8% that varies among populations. However, severe
DPD deficiency is a rare autosomal recessive disorder
with large phenotypic variability, including intellectual
disability, motor impairment, and seizures (https://
medlineplus.gov/genetics/condition/dihydropyrimidine-dehy
drogenase-deficiency/#frequency, last accessed January 5,
2024).

Testing for variants in the DPYD gene can help identify
patients at risk of developing fluoropyrimidine toxicity who
should receive reduced doses or avoid treatment with
capecitabine and fluorouracil, as recommended by CPIC and
DPWG guidelines. The association of DPYD with 5-FU and
capecitabine toxicity are also included in the US Food
and Drug Administration Table of Pharmacogenomics
Biomarkers in Drug Labeling with indications for warnings
and precautions (https:/www.fda.gov/drugs/science-and-
research-drugs/table-pharmacogenomic-biomarkers-drug-
labeling, last accessed January 5, 2024). Germline
diagnostic testing for autosomal recessive DPD deficiency
at clinical laboratories may be distinct from
pharmacogenomic DPYD testing, as sequencing is more
commonly implemented for diagnostic testing. As such,
the variants analyzed, test design, interpretation, and
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clinical use are different; however, some laboratories may
offer a single DPYD genetic test for both diagnostic and
pharmacogenomic indications.

DPYD Variants and Haplotypes

Some DPYD variants were assigned star (*) allele numbers
when first published (DPYD*I to DPYD*13), as proposed
by McLeod et al in 1998,'® whereas others were reported
and referred to by a descriptive name (eg, Hap3B) or a
Single Nucleotide Polymorphism Database reference SNP
cluster ID (dbSNP rsID) (https://www.ncbi.nlm.nih.gov/snp,
last accessed January 5, 2024). However, the use of star
nomenclature based on haplotypes capturing all variants
within a defined gene region was deemed impractical by
the PharmVar DPYD Gene Expert panel because of the
size of the gene (843 kilobases) and the presence of
recombination between exons, which makes haplotype
phasing across all exonic regions extremely difficult.
Furthermore, the PharmVar DPYD experts also argued
that many of the functionally relevant variants are rare,
and if detected, clinicians may act on their presence
regardless of whether the haplotype has other variants.
Contrary to the star allele nomenclature used for other
pharmacogenes, such as CYP2CI9 or CYP2D6, which
captures all variants on an allele across a defined region,
the star designation for DPYD was originally used to
describe individual variants rather than haplotypes. To
address these gene-specific challenges, PharmVar lists
1sIDs for DPYD (https://www.pharmvar.org/gene/DPYD,
last accessed January 5, 2024) with star designations
being shown as legacy names. DPYD variants should be
described using standard Human Genome Variation
Society nomenclature instead of the legacy star allele
names. Because more than two variants can be found in
an individual, the CPIC guideline uses a DPD activity
score to facilitate standardized reporting for predicted
overall DPD activity. Briefly, normal function variants
have an activity value of 1, nonfunctional variants have a
value of 0, and decreased activity variants are assigned a
value of 0.5. The two lowest scoring variants are used to
calculate the activity score, which is mapped to the
prescribing recommendation (https.//www.pharmgkb.org/
page/dpydRefMaterials, last accessed January 5, 2024).

Existing Clinical Guidelines and Recommendations

Drug-gene pair-based clinical guidelines have been
developed for 5-FU and capecitabine with DPYD by CPIC
(2017 updatew ; for additional updates, see https://www.
pharmgkb.org/chemical/PA44877 1/guidelineAnnotation/

PA166109594, last accessed January 5, 2024), DPWG
(https://www.pharmgkb.org/chemical/PA448771/guideline
Annotation/PA166104963, last accessed January 5,
2024),”" and experts from the Spanish Pharmacogenetics
and Pharmacogenomics Society, the Spanish Society of
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Medical Oncology, and the French National Network of
Pharmacogenetics.”'*> All recommend that an alternative
drug be used for patients who are predicted to be DPD
poor metabolizers with an activity score of 0 or 0.5, and
a genotype-guided dosing adjustment is recommended for
individuals who are predicted to be DPD intermediate
metabolizers (activity score of 1 or 1.5). The DPWG
considers DPYD genotyping as essential before
fluoropyrimidine therapy. The French National Network
of Pharmacogenetics publication considers the serum
dihydrouracil/uracil ratio or lymphocyte DPD activity-
based phenotyping essential, and targeted DPYD
genotyping should be performed if biochemical
phenotyping is not available.

Testing Platforms

Selection of a molecular platform or assays to use for testing
PGx variants can be based on many factors that include, but
are not limited to, the spectrum of sequence variants, tech-
nical feasibility of analysis of the genomic region of interest,
cost, laboratory workflow, and test turnaround time
required. As the DPYD gene resides on a genomic region
that is amenable to interrogation using standard molecular
techniques, clinical molecular laboratories may use targeted
genotyping or sequencing (Sanger sequencing or next-
generation sequencing) approaches, determined at the
discretion of the testing laboratory. Almost all commonly
used molecular platforms, except for long-read sequencing
technologies,” % are unable to provide phasing informa-
tion of the detected variants. In addition, as described pre-
viously, pathogenic/nonfunctional/reduced function variants
in DPYD have both a pharmacogenomic indication and
clinical implications for diagnosing autosomal recessive
DPD deficiency. Therefore, the testing platform chosen,
approach for variant classification, result interpretation,
post-test recommendations, and clinical implementation can
be different for DPYD testing for these different clinical
indications. This may impact clinical test selection as some
laboratories may only perform testing and interpretation for
one of these indications, whereas other laboratories will
provide an interpretation for both diagnostic and PGx
indications.

There are 122 clinical tests for DPYD from 47 labora-
tories worldwide listed in the Genetic Testing Registry
(https://www.ncbi.nlm.nih.gov/gtr/all/tests/?term = 1806[ ge
neid], last accessed January 5, 2024). Except for
phenotyping tests (analyte or enzyme activity assays), all
other clinical tests are molecular method—based analysis
of DPYD using targeted genotyping or sequencing. Gene
copy number variation (CNV) analysis (ie, testing for the
presence of deletions and/or duplications) is included in 63
of 122 DPYD tests. In terms of test purpose, diagnosis (93
tests), screening (23 tests), and drug response (19 tests) are
the three primary applications of DPYD testing.

Materials and Methods

The AMP PGx Working Group is composed of subject
matter experts from the American College of Medical Ge-
netics and Genomics, CDC, CPIC, College of American
Pathologists, DPWG, European Society for Pharmacoge-
nomics and Personalized Therapy, Pharmacogenomics
Knowledgebase, PharmVar, and the PGx clinical testing and
research communities. DPYD variants were reviewed and
classified into two tiers based on four criteria:

(1) Functional characterization of the variant (ie, whether it
is known to affect expression of the gene or function of
the encoded protein).

(2) Presence at an appreciable minor allele frequency in a
population/ancestral group. In this DPYD recommen-
dation document, the Working Group used a minor
allele frequency in at least one subpopulation of >0.1%
for tier 1 variants, and >0.01% for tier 2 variants
(https://gnomad.broadinstitute.org version 4.0.0, last
accessed February 11, 2024).

(3) Availability of RMs (Table 1).%

(4) Technical feasibility for clinical laboratories to interro-
gate using standard molecular testing methods. This cri-
terion was determined to not be relevant for these DPYD
recommendations, as none of the reviewed variants were
considered difficult to interrogate using standard
methods.

These criteria received equal weight during the AMP PGx
Working Group deliberations. Additionally, commercially
available genotyping platforms (Supplemental Table SI)
were reviewed for assessing the ability of laboratories to
implement the Working Group recommendations; however,
these data were not used as a determinant of tier assignment.
The European Medicines Agency recommendations were
also reviewed. Variants that were listed in the European
Medicines Agency capecitabine drug label that normally
would not meet the frequency cutoff for tier 1 were included,
specifically c.1679T>G  (rs55886062, legacy name
DPYD™*13) (https:/twww.pharmgkb.org/labelAnnotation/
PA166104905, last accessed May 7, 2024). The AMP PGx
Working Group used functional information from CPIC.
CPIC assigned clinical function (https://cpicpgx.org/
resources, last accessed January 5, 2024) may not be the
same as the biochemical function of the variant or the
American College of Medical Genetics and Genomics/
AMP recommendations for interpretation of sequence
variants widely adopted by clinical molecular genetics
laboratories for inherited disorders.”’

College of American Pathologists proficiency testing
(PT) program data were obtained from the Pharmacoge-
netics, PGX-A 2023 mailing.”® PT program participants
include both US-based and international laboratories.
Laboratories self-reported whether they clinically tested for
DPYD as well as which variants their test is designed to
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Table 1  Reference Materials

Consensus genotype Variant rsID
Coriell ID NM_000110.4 (legacy name)
HG01631 €.299_302del het rs72549309 (*7)
NA19207 €.557A>G het rs115232898
NA20362 €.557A>G het rs115232898
HG02645 c.868A>G het rs146356975
HG02772 c.868A>G het 15146356975
NA20362 €.1129-5923C>G het rs75017182 (Hap3B)
HG00118 €.1129-5923C>T het rs75017182 (HapB3)
HG00129 €.1129-5923C>T het rs75017182 (HapB3)
NA20362 €.1236G>A het rs56038477 (HapB3)
HG00118 €.1236G>T het rs56038477 (HapB3)
HG00129 €.1236G>T het rs56038477 (HapB3)
HG00613 €.1314T>G het rs186169810
HG01631 €.1627A>G het rs1801159 (*5)
NA12248 €.1679T>G het rs55886062 (*13)
HG00332 €.1679T>G het rs55886062 (*13)
NA18956 €.1774C>T het rs59086055
NA20901 €.1905+1G>A het rs3918290 (*2A)
HG00185 €.1905+1G>A het rs3918290 (*2A)
HG03645 €.2279C>T het rs112766203
HG03716 €.2279C>T het rs112766203
NA06991 .2846A>T het rs67376798
HG00118 €.2846A>T het rs67376798

Information about additional reference materials and variants is also
available from Gaedigk et al.?®

SensID (https://www.sens-id.com/shop/gdna-en/sid-000110, last
accessed January 10, 2024; Rostock, Germany) has commercial DPYD
controls. Inclusion herein does not represent an endorsement of any
product or service by the Association for Molecular Pathology.

fAccording to Gaedigk et al.?®

Hap3B, haplotype B3; Het, heterozygous; ID, identifier.

detect. Additionally, data were obtained from the
Germany-based Reference Institute for Bioanalytics, the
UK-based European Molecular Genetics Quality Network,
and the Dutch-based Stichting Kwaliteitsbewaking Medi-
sche Laboratoriumdiagnostiek.

Results
Tier 1 DPYD Variant Alleles

DPYD variants recommended for inclusion in tier 1 include
NM_000110.4:c.1905+1G>A, c.1679T>G, c.1129-
5923C>G, c¢.557TA>G, c.868A>G, ¢.2279C>T, and
c.2846A>T (Table 2). Human Genome Variation Society
nomenclature was used throughout (https://www.ncbi.nlm.nih.
gov/snp and hitp://www.ncbi.nlm.nih.gov/clinvar, last accessed
January 5, 2024); variant frequency by population information
is from https://gnomad.broadinstitute.org version 4.0.0 (last
accessed February 11, 2024) unless otherwise specified.

DPYD c.1905+1G>A
The no function ¢.1905+1G>A variant is located at the
exon 14/intron 14 splice junction causing aberrant splicing,
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which has been associated with absence of activity
(NM_000110.4: c.19054+1G>A, rs3918290, legacy name
DPYD*2A).""?°73> This variant is found in the Middle
Eastern, South Asian, and European (non-Finnish) pop-
ulations at allele frequencies between 0.3% and 0.5%. It is
less prevalent in those of African ancestry at an allele fre-
quency of 0.05% and is not typically found in East Asian
populations.

DPYD ¢.1679T>G

The no function c.1679T>G variant in exon 13 is a
missense variant (NM_000110.4:c.1679T>G, p.lle560Ser,
1s55886062, legacy name DPYD*13).”>** This rare variant
has been primarily observed in the European (non-Finnish)
population at a frequency of 0.08%, followed by those of
African ancestry at 0.02% frequency. It has not been found
in Middle Eastern, South Asian, and East Asian populations.
Although the population frequency of this variant is below
the tier 1 frequency threshold of 0.1%, it was elevated to tier
1 based on the European Medicines Agency drug label and
European guidelines for DPYD testing.

DPYD ¢.1129-5923C>G

The haplotype previously designated as HapB3 is a
decreased function allele. It is currently defined by two
variants in cis, ¢.1129-5923C>G (NM_000110.4:¢c.1129-
5923C>G, rs75017182) and c.1236G>A
(NM_000110.4:¢.1236G>A, 1556038477, p.Glu412=).
The ¢.1129-5923C>G variant is in intron 10 and in-
troduces a cryptic splice site, which has been associated
with decreased DPD activity in individuals with the HapB3
haplotype.”” *’ Previous studies have reported that the
synonymous variant ¢.1236G>A is in linkage disequilib-
rium (LD) with ¢.1129-5923C>G in Europeans, and thus,
c.1236G>A has been used as a tag to detect the presence
of ¢.1129-5923C>G.'*3® However, recent data have found
that the two variants are not in complete LD in all pop-
ulations, and that using the ¢.1236G>A variant alone to
infer the haplotype may lead to rare false-positive at-risk
phenotype assignments as c¢.1236G>A can occur without
the underlying functional variant ¢.1129-5923C>G.** The
¢.1129-5923C>G is the most common decreased function
variant in Middle Eastern, European (non-Finnish), and
South Asian populations at frequencies of 2.4%, 2.1%, and
1.6%, respectively. It is rare in individuals of East Asian
ancestry at 0.06% and slightly more prevalent in those of
African/African American ancestry, at approximately
0.3%.

DPYD c.557A>G

The NM_000110.4:c.557A>G (rs115232898, p.Tyr186-
Cys) variant is a missense variant in exon 3 that encodes a
tyrosine-to-cysteine amino acid change reported to impact
function.” This decreased function variant is most prevalent
among those of African genetic ancestry,”’ with a multi-
ethnic allele frequency range of 0% to 2.1%.
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Table 2  Tier 1 DPYD Variants
Multiethnic
CPIC Reference allele
Variant Legacy defined Activity DPYD RefSeqGene HGVS protein material  frequency,
(NM_000110.4) name  function value rsID (LRG_722) GRCh38.p13 chr 1 nomenclature available’ %
c.1905+1G>A *2A No function 0 s3918290 NG_008807.2: NC_000001.11: N/A Yes 0—0.5
§.476002G>A g.97450058C>T
c.1679T>G *13 No function 0 rs55886062 NG_008807.2: NC_000001.11: NP_000101.2: Yes 0—0.08
§.410273T>G g.97515787A>(C p.Ile560Ser
€.1129-5923C>G, HapB3  Decreased 0.5 rs75017182, NG_008807.2: NC_000001.10: N/A, Yes 0.06—2.4
€.1236G>A function rs56038477 g.346167C>G, g.97579893G>(, NP_000101.2:
NG_008807.2: NC_000001.10: p.Glu412=
g.352197G>A g.97573863C>T
c.557A>G N/A Decreased 0.5 rs115232898 NG_008807.2: NC_000001.11: NP_000101.2: Yes 0—2.1
function §.226586A>G g.97699474T7>C p.Tyr186Cys
c.868A>G N/A Decreased 0.5 15146356975 NG_008807.2: NC_000001.11: NP_000101.2: Yes 0—0.2
function g.330911A>G g.975951497>C p.Lys290Glu
€.2279C>T N/A Decreased 0.5 rs112766203 NG_008807.2: NC_000001.11: NP_000101.2: Yes 0—0.5
function g.620781C>T g.97305279G>A p.Thr760Ile
C.2846A>T N/A Decreased 0.5 rs67376798 NG_008807.2: NC_000001.11: NP_000101.2: Yes 0—0.6
function g.843669A>T g.97082391T>A p.Asp949Val

Citations for DPYD variant function assignments can be found at https://www.pharmgkb.org/page/dpydRefMaterials; and for HGVS nomenclature, at https://
www.ncbi.nlm.nih.gov/snp and http://www.ncbi.nlm.nih.gov/clinvar (last accessed January 5, 2024).
Table 1 and Gaedigk et al.?® The characteristic variant and corresponding HGVS nomenclature associated with altered function of the HapB3 allele is

underlined.

Chr, chromosome; CPIC, Clinical Pharmacogenetics Implementation Consortium; GRCh38, genome reference consortium human build 38; Hap3B, haplotype
B3; HGVS, Human Genome Variation Society; ID, identifier; LRG, locus reference genomic; N/A, not applicable; RefSeqGene, Reference Sequence.

DPYD c.868A>G

The decreased function c.868A>G variant is a missense
variant in exon 9 (NM_000110.4:¢.868A>G, p.Lys290Glu,
1s146356975)."** This variant is observed in the African
ancestry population at an overall frequency of 0.2% and is
rare in the Middle Eastern population at a frequency of
<0.02%. This variant has not been found in those of Eu-
ropean, East Asian, or South Asian populations.

DPYD ¢.2279C>T

The decreased function ¢.2279C>T variant in exon 18 is a
missense variant that changes a threonine to isoleucine
(NM_000110.4: c.2279C>T, p-Thr760Ile,
1s112766203).*** This variant has been observed mostly in
the South Asian population at a frequency of 0.5% and is rare
in the East Asian population at a frequency of <0.01%. This
variant has not been found in those of African ancestry, or in
Middle Eastern and European populations. Of note,
rs112766203 is tri-allelic and can also occur as
NM_000110.4: ¢.2279C>G (p.Thr760Ser), with a frequency
of 0.0003% (https://gnomad.broadinstitute.org/variant/1-
97305279-G-C?dataset = gnomad_r4, last accessed January
5, 2024); however, this alternate nucleotide is not included
as a tier 1 or tier 2 allele.

DPYD c.2846A>T

The  decreased function = NM_000110.4:c.2846A>T
(rs67376798, p.Asp949Val) variant in exon 22 is a missense
variant, leading to an aspartic acid—to—valine amino acid
change in exon 22 that is associated with decreased func-
tion™* and increased toxicity.”*® The c.2846A>T variant

occurs in the European (non-Finnish) population at 0.6% and
in those of African ancestry at approximately 0.1%. It is
extremely rare in South Asian or Middle Eastern populations
at allele frequencies of 0.05% and 0.03%, respectively.

Tier 2 DPYD Variant Alleles

DPYD variants recommended for inclusion in tier 2 include
NM_000110.4:¢.299_302del, ¢.703C>T, ¢.1314T>G,
c.1475C>T, ¢.1774C>T, and ¢.2639G>T (Table 3).

DPYD c.299_302del

The no function ¢.299_302del variant is a frameshift
variant in exon 4, resulting in a nonfunctional protein
product (NM_000110.4:c.299_302del, p.Phel00Serfs*15,
1572549309, legacy name DPYD*7).*”*® This variant is
observed in the non-Finnish European population at an
overall frequency of 0.015%.

DPYD ¢.703C>T

The no function ¢.703C>T variant is a missense variant in
exon 7 (NM_000110.4: ¢.703C>T, p.Arg235Trp,
1s1801266, legacy name DPYD*8).*****" This variant has
been observed in the South Asian, East Asian, and European
(non-Finnish) populations at frequencies of 0.03%, 0.004%,
and 0.004%, respectively, but has not been found in in-
dividuals of Middle Eastern or African ancestry.

DPYD ¢.1314T>G
The decreased function ¢.1314T>G variant is a missense
variant in  exon 11 (NM_000110.4:¢.1314T>G,
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Table 3  Tier 2 DPYD Variants
Multiethnic
Reference allele
Variant Legacy CPIC defined Activity DPYD RefSeqGene HGVS protein material  frequency,
(NM_000110.4) name  function value rsID (LRG_722) GRCh38.p13 chr 1 nomenclature available’ %
€.299_302del *7 No function 0 rs72549309 NG_008807.2: NC_000001.11: NP_000101.2: Yes 0—0.01
q.185642TCAT[1] q.97740411ATGA[1] p.Phe100fs
€.703C>T *8 No function 0 rs1801266 NG_008807.2: NC_000001.11: NP_000101.2: No 0—0.03
.234284C>T 9.97691776G>A p.Arg235Trp
€.1314T>G N/A Decreased 0.5 1s186169810 NG_008807.2: NC_000001.11: NP_000101.2: Yes 0—0.05
function g.352275T>G g.97573785A>C p.Phe438Leu
c.1475C>T N/A No function 0 rs72549304 NG_008807.2: NC_000001.11: NP_000101.2: No 0—0.02
§.376451C>T §.97549609G>A p.Ser492Leu
c.1774C>T N/A No function 0 rs59086055 NG_008807.2: NC_000001.11: NP_000101.2: Yes 0—0.08
g.475870C>T §.97450190G>A p.Arg592Trp
€.2639G>T N/A No function 0 1s55674432 NG_008807.2: NC_000001.11: NP_000101.2: No 0—0.08
q.8274446>T .97098616C>A p.Glyssoval

Citations for DPYD variant function assignments can be found at https://www.pharmgkb.org/page/dpydRefMaterials; and for HGVS nomenclature, at https://
www.ncbi.nlm.nih.gov/snp and http://www.ncbi.nlm.nih.gov/clinvar (last accessed January 5, 2024).

Table 1 and Gaedigk et al.?®

Chr, chromosome; CPIC, Clinical Pharmacogenetics Implementation Consortium; GRCh38, genome reference consortium human build 38; HGVS, Human
Genome Variation Society; ID, identifier; LRG, locus reference genomic; N/A, not applicable; RefSeqGene, Reference Sequence.

p.Phe438Leu, rs186169810)."" This variant is observed in
the East Asian population at an overall frequency of 0.05%.

DPYD c.1475C>T

The no function ¢.1475C>T variant is a missense variant in
exon 12 (NM_000110.4:c.1475C>T, p.Ser492Leu,
1572549304).*%*1 This variant is observed in the South
Asian population and those of African ancestry at allele
frequencies of 0.02% and 0.01%, respectively. Note that
1572549304 is quad-allelic: ¢.1475C>G (p.Ser492Trp, 0%
t0 0.0009%) and c.1475C>A (p.Serd92Ter, 0% to 0.005%);
however, these alternate nucleotides are not included as tier
1 or tier 2 alleles based on frequency.

DPYD ¢.1774C>T

The no function ¢.1774C>T variant in exon 14 is a missense
variant that changes an arginine to tryptophan (NM_000110.4:
c.1774C>T, p.Arg592Trp, 1s59086055)."7*% This variant
has been observed in the East Asian population at a frequency
of 0.08% but <0.01% in South Asian and European (non-
Finnish) populations, as well as those of African ancestry. It
has not been found in Middle Eastern populations.

DPYD c.2639G>T

The no function ¢.2639G>T variant is a missense variant in
exon 21 (NM_000110.4:c.2639G>T, p.Gly880Val,
1s55674432).*" This variant is observed in the South Asian
population at an overall frequency of 0.08%.

Discussion
In this document, the AMP PGx Working Group recom-

mends inclusion of specific DPYD variants in clinical PGx
genotyping assays as either tier 1 or tier 2 variants. The goal
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of this recommendation and other related Working Group
recommendations is to promote standardization and to
ensure that laboratories conducting PGx testing include the
most clinically relevant variants. Although these recom-
mendations are designed to be inclusive of admixed pop-
ulations, laboratories should consider the genetic variation
present in their population. Modification of these recom-
mendations may be considered, and laboratories should
justify their variant selection. Clinical laboratories should
follow best practices for assay validation and adhere to the
applicable regional regulatory requirements, as well as
considering the technical recommendations from the
American College of Medical Genetics and Genomics.”

DPYD is a polymorphic gene with approximately 1600
variants described in Genome Aggregation Database version
4.0.0 to date; however, most of these variants are rare. After
excluding noncoding and synonymous variants, the average
and median frequencies of the remaining 800 variants are
0.145% and 0.00078%, respectively. Although DPYD has
many rare variants, collectively they may impact a significant
number of individuals. For example, in a recent study of
>10,000 individuals, if a panel of the three most commonly
tested DPYD variants [NM_000110.4:c.1905+1G>A (*2A);,
¢.1679T>G (*13); and c.2846A>T (rs67376798)] was used
instead of sequencing, 112 potentially significant variants
present in 630 individuals (6.3% of the cohort) would have
gone undetected.” However, many of these rare variants
currently have unknown function.

Most of the recommended clinically relevant DPYD
variants are rare in the general population. Because of the
extreme toxicity associated with DPD deficiency, DPYD
variants with at least 0.1% allele frequency in any human
subpopulation are recommended as tier 1 to
include in pharmacogenetic testing. In addition,
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NM_000110.4:c.1679T>G, p.lle560Ser, 1555886062
(legacy name DPYD*13) does not meet the PGx Working
Group allele frequency cutoff for tier 1; however, it is
recommended for inclusion in tier 1 because of its asso-
ciation with extreme toxicity and the European Medicines
Agency drug label recommendations for this variant. All
variants recommended for tier 2 had a frequency between
0.1% and 0.01%. Additionally, three variants
(NM_000110.4:c.703C>T, NM_000110.4:c.1775G>A,
and NM_000110.4:¢.2639G>T) in tier 2 do not have an
identified RM. The overall detection rate of the recom-
mended tier 1 and tier 2 variants to identify individuals
with impaired DPD function could not be reliably deter-
mined at this time, as the overall incidence of partial or
complete DPD deficiency is not well defined, and a large
percentage of deleterious variants are rare or novel.

Although the Working Group focused on variants previ-
ously identified in the literature and included in the list of
variants curated by CPIC as associated with 5-FU toxicity,
additional variants are present in the Genome Aggregation
Database that may also be associated with DPD deficiency
and/or 5-FU toxicity, such as the ¢.2043_2058del
(p.Leu682IlefsTer24, rs773499329; minor allele frequency,
0.006%) that was identified during the Genetic Testing
Reference Materials Coordination Program (GeT-RM)
study.”® Although the overall minor allele frequency is
0.006%, it is observed predominantly in the South Asian
population at 0.1%. Laboratories may choose to include
these additional variants as they are identified.

Because of the large number of rare variants and potentially
severe toxicities, clinical laboratories may choose to conduct
full gene sequencing rather than genotyping to identify vari-
ants in the DPYD gene. However, laboratories performing
sequencing should be aware that the current American College
of Medical Genetics and Genomics/AMP guidelines for
interpretation of sequence variants are not designed for inter-
preting pharmacogenomic variants.”’ As such, many rare
variants encountered during clinical sequencing may ulti-
mately be classified as variants of uncertain significance.
Although sequencing may allow for detection of both common
and rare variants, use of Sanger sequencing or short-read next-
generation sequencing will not resolve the phase of variants
when more than one variant is detected.

The haplotype known as HapB3 (legacy name) consists of
a deep intronic variant, NM_000110.4:c.1129-5923C>G
(rs75017182), that causes alternative splicing and results in
decreased enzyme activity, and a synonymous variant in cis,
NM_000110.4:¢c.1236G>A (156038477, NP_000101.2:
p.Glu412=). The original definition of the HapB3 haplotype
included three additional intronic variants,
NM_000110.4:c.483+18C>T (1s56276561), ¢.680+139
C>T (156668296), and ¢.959-51C>T (rs115632870).°°
However, the latter are not in complete LD, are not known
to alter function, and thus are not suitable proxies for
detection of ¢.1129-5923C>G. In contrast, c¢.1129-
5923C>G and ¢.1236G>A have been assumed to be in

perfect LD. On the basis of the assumption of perfect LD,
some laboratories test the synonymous variant c.1236G>A,
and not the intronic splice variant ¢.1129-5923C>G, to
predict an individual’s risk of severe fluoropyrimidine-related
toxicity. However, recent findings demonstrate that c.1129-
5923C>G and ¢.1236G>A are not in perfect LD, as some
rare cases harbor the c¢.1236G>A variant without c.1129-
5923C>G." Using ¢.1236G>A as a tag variant may not
predict an accurate phenotype in rare cases. Although these
cases are rare, it emphasizes the importance of assaying for
the functional variant that causes decreased activity (ie,
c.1129-5923C>G). Some laboratories performing exome
sequencing may test ¢.1236G>A as a proxy for the presence
of the deep intronic functional variant ¢.1129-5923C>G, as
intronic variants such as this are not detected in the setting of
exome sequencing. However, for clarity, it is recommended
that laboratories using this strategy include a limitation in
their report acknowledging the incomplete LD as well as
information pertaining to c.1129-5923C>G (rs75017182) as
the underlying causal variant.

Patient advocacy groups, such as Advocates for Universal
DPD/DPYD Testing (https://testddpd.org, last accessed
January 5, 2024), have emerged and are working to raise
awareness about fluoropyrimidine toxicity and the
availability of DPYD testing, as well as advocating for
universal testing. Some testing proponents have suggested
the possibility of including DPYD when performing
genomic analysis of tumors for other actionable therapeutic
markers to detect patients at risk of toxicity to
chemotherapeutic agents because of DPD deficiency.
Although tumor tissue may have additional somatic
variants not present in blood, and thus are also absent from
the liver, where the bulk of the fluoropyrimidine
metabolism occurs, a small study suggested concordance
between blood and tumor testing.”’ As tumor sequencing is
becoming more routine in cancer care, the PGx Working
Group supports consideration of DPYD testing in the setting
of tumor diagnostic testing; however, if tumor tissue is
sequenced, germline confirmation may be required. The PGx
Working Group recognizes that either targeted genotyping or
sequencing approaches may be used by laboratories and does
not recommend a particular method for testing, nor does it
explicitly recommend for or against testing.

In vitro functional assays and in silico predictors of
protein function can be useful in gauging the effect of
DPYD variants.”® Functional assays for DPD activity have
the potential to identify all individuals with DPD deficiency,
regardless of the variants present, and could be an alterna-
tive to DPYD genotyping. However, there is currently no
standard for DPD functional testing, and current assays have
shown conflicting results.”

Copy Number Variation and Partial Gene Deletions

CNVs, including deletions and duplications of DPYD, have
been observed in individuals with DPD deficiency or 5-FU
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toxicity. Most recently, a study identified a high prevalence
of an exon 4 deletion in the Finnish population at a fre-
quency of 2.4% in individuals prescreened for DPD defi-
ciency.® This was followed by another study that observed
a lower frequency of 0.2% for the exon 4 deletion in a
Canadian population. Notably, the latter study found the
exon 4 deletion in an individual with severe 5-FU
toxicity.®' These studies suggested that the exon 4 dele-
tion may be relatively common and found in up to 7% of
individuals with DPD deficiency; frequencies of exon 4
deletions are likely population specific and may vary
considerably among different patient populations.®>"
Interstitial deletions of exons 6, 12, and 14 to 16, in
addition to partial and whole gene DPYD deletions, have
been observed in individuals with DPD deficiency with
variable phenotypes, including speech delay, autism-like
symptoms, intellectual delay, seizures, and/or obesity.(’l
Notably, exon 4 and 11 deletions have been found
among the DPYD RMs, whereas no materials with exon 6,
12, or 14 to 16 deletions were found.>® Although the
exonic deletions meet the frequency for inclusion in either
tier 1 or tier 2, as they are not clearly well defined at this
time, the PGx Working Group does not currently have
recommendations for routine clinical testing.

With increasing use of next-generation sequencing as the
testing platform for PGx in clinical laboratories, it may be
possible to identify recurrent or rare CNVs at the exon level
in DPYD. Other technologies, including chromosome
microarray, multiplex ligation-dependent probe amplifica-
tion, TagMan copy number assays, and exon arrays, can
also be used to detect CNVs as well.”"** The AMP PGx
Working Group has no recommendations for DPYD CNV
testing at this time, and most clinical PGx assays do not
currently include CNV analysis; however, CNV testing
could be considered in cases of 5-FU toxicity or DPD
deficiency in which a single pathogenic sequence variant
could not explain the phenotype.

Proficiency Testing and External Quality Assessment

Several PT or external quality assessment programs are
available for DPYD genotyping. College of American Pa-
thologists PT data were evaluated to gain a better under-
standing of the testing practices of laboratories, including
which DPYD alleles are currently included in clinical
testing.”® Of the 245 participants in the College of Amer-
ican Pathologists PGX-A 2023 mailing, 69 (28.2%)
responded to questions related to DPYD testing. Among
those 69 laboratories, 64 (92.8%) indicated that they offer a
clinical DPYD test. The number and percentage of the 64
laboratories that reported testing 10 listed DPYD alleles are
presented in Table 4. The single laboratory not testing for
the ¢.1905+1G>A allele tests for only c.1679T>G
(rs55886062, DPYD*13). The most common combinations
of alleles included in testing were as follow: i) four tier 1
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variants:  ¢.1905+1G>A  (rs3918290), ¢c.1679T>G
(rs55886062), ¢.1129-5923C>G  (rs75017182), and
c.2846A>T (rs67376798), tested by 14 (20.3%) of labo-
ratories; 1ii) three tier 1 wvariants: ¢.19054+1G>A
(rs3918290), ¢.1679T>G (rs55886062), and c.2846A>T
(rs67376798), tested by 11 (15.9%) of laboratories; and iii)
all 10 listed variants, tested by 11 (15.9%) of laboratories.

In Europe, there are three major external quality assess-
ment vendors: the Germany-based Reference Institute for
Bioanalytics, the UK-based European Molecular Genetics
Quality Network, and the Dutch-based Stichting Kwali-
teitsbewaking Medische Laboratoriumdiagnostiek (Table 4).
The PGx Working Group acknowledges that most clinical
laboratories and PT/external quality assessment (EQA) pro-
viders will need to expand their offerings to meet the rec-
ommended tier 1 and 2 variants.

Limitations

This document focuses only on recommendations of vari-
ants to include in clinical pharmacogenomic genotyping
assays for DPYD; as such, these recommendations should
not be interpreted as recommendations for clinical diag-
nostic testing for autosomal recessive DPD deficiency. In
addition, this document does not include mapping of ge-
notypes to phenotypes, clinical interpretation of genotypes,
or recommendations for changes to medication therapy
based on genotype, as these were determined to be out of
scope for this document and/or available from other re-
sources, such as CPIC and Pharmacogenomics Knowl-
edgebase. Although technical challenges related to
interrogating DPYD were discussed in this document, the
Working Group does not recommend or endorse any mo-
lecular testing platforms for DPYD genotyping.

Conclusions

This document provides recommendations for variants to
include in clinical pharmacogenomic DPYD genotyping
assays. These recommendations are intended to facilitate the
design and implementation of pharmacogenomic testing by
clinical laboratories. In addition, these recommendations are
intended to promote test standardization and genotype
concordance between laboratories.

Disclaimers

The Association for Molecular Pathology (AMP) Clinical
Practice Guidelines and Reports are developed to be of
assistance to laboratory and other health care professionals
by providing guidance and recommendations for particular
areas of practice. The Guidelines or Reports should not be
considered inclusive of all proper approaches or methods,
or exclusive of others. The Guidelines or Reports cannot
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Table 4 Variants Included in Proficiency Testing

Variant (legacy name) cDNA Tier CAP, N (%) RfB, N (%) SKML, N (%) EMQN, N (%)
153918290 (*2A) €.1905+1G>A 1 63 (98) 142 (100) 22 (100) 73 (100)
rs72549303 (*3) €.1898del None 13 (20)

rs1801158 (*4) c.1601G>A None 1(1)
rs1801159 (*5) .1627A>G None 1 (1)
rs1801160 (*6) €.2194G>A None 47 (64)
1572549309 (*7) €.299_302del 2 15 (23) 2 (9)F 5 (7)
151801266 (*8) €.703C>T 2 18 (28) 3 (4)
rs1801265 (*9A) c.85T>C None 2 (3)
rs1801267 (*9B) €.2657G>A None 13 (20) 2 (3)
rs1801268 (*10) €.2983G>T None 3 (4)
rs72549306 (*11) €.1003G>T None 1(2)
rs115232898 c.557A>G 1 27 (42) 3 (4)
1578060119 (*12) €.1156G6>T None 14 (22) 2 (3)
1s55886062 (*13) .1679T>G 1 59 (92) 138 (97) 22 (100) 71 (97)
rs72549310 c.61C>T None 1(1)
167376798 C.2846A>T 1 54 (84) 138 (97) 22 (100) 70 (96)
1s75017182 (HapB3) €.1129-5923C>G 1 36 (56) 50 (35) 22 (100) 44 (60)
rs56038477 (HapB3) €.1236G>A None 28 (38)

The number (percentage) of laboratories that reported testing for specific DPYD variants was provided on the basis of the CAP proficiency testing Phar-
macogenetics, PGX-A 2023 mailing,”® the German RfB MG21/23 proficiency testing, the Dutch SKML Farmacogenetica 2023 testing, and the UK EMQN 2022
external quality assessment. Empty cells indicate these variants were not available in the proficiency testing.

fUnpublished data from 2022 assessment.

Information from the 2021 Dutch Pharmacogenetics Network survey because this variant is not part of the SKML testing scheme.
CAP, College of American Pathologists; cDNA, coding DNA; EMQN, European Molecular Genetics Quality Network; HapB3, haplotype B3; RfB, Reference
Institute for Bioanalytics; SKML, Stichting Kwaliteitsbewaking Medische Laboratoriumdiagnostiek.

guarantee any specific outcome, nor do they establish a
standard of care. The Guidelines or Reports are not
intended to dictate the treatment of a particular patient.
Treatment decisions must be made on the basis of the in-
dependent judgment of health care providers and each
patient’s individual circumstances. The AMP makes no
warranty, express or implied, regarding the Guidelines or
Reports and specifically excludes any warranties of
merchantability and fitness for a particular use or purpose.
The AMP shall not be liable for direct, indirect, special,
incidental, or consequential damages related to the use of
the information contained herein.

The findings and conclusions in this report are those of
the authors and do not necessarily represent the official
position of the CDC/Agency for Toxic Substances and
Disease Registry. Use of trade names and commercial
sources is for identification only and does not imply
endorsement by the CDC, the Public Health Service, or the
US Department of Health and Human Services.
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