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In recent years, next-generation sequencing (NGS)–based genetic testing has become crucial in cancer care. While its primary objective 
is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in pathological 
diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling necessity 
arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations not only 
provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific cancer 
types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed decisions re-
garding circulating tumor DNA panel testing.
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Over the past few years, next-generation sequencing (NGS)–
based genetic testing has emerged as a crucial aspect of cancer 
patient care, with the number of tests performed rapidly increas-
ing since its reimbursement by the national health insurance in 
Korea in 2017. However, as the use of NGS-based genetic test-
ing continues to expand, there is an increasing need for maximiz-
ing benefits for patients while also considering cost-effectiveness.

The primary objective of NGS-based genetic testing is to 
identify targetable actionable genes that can guide treatment se-
lection. However, its application has expanded to include diag-
nosis and exploration of resistance mechanisms, enabling more 
personalized treatment options. Moreover, biomarkers like ho-
mologous recombination deficiency (HRD), microsatellite in-
stability–high (MSI-H)/mismatch repair deficiency (MMR-D), 
and high tumor mutational burden (TMB-H) have gained in-
creasing significance. Consequently, NGS-based testing is now 
widely used to analyze these biomarkers and make well-in-
formed treatment decisions.

With the expanding application of NGS-based genetic test-
ing, there is a need for expert consensus on best practices and 
guidelines for its use. This recommendation aims to (1) provide 
guidance on the practical application of NGS in daily clinical 
practice and (2) classify actionable gene lists by cancer type, based 
on a comprehensive review of the literature and the consensus of 
experts. Furthermore, the recommendation will present expert 
opinions, based on existing evidence, regarding biomarkers in-
cluding HRD, MSI-H/MMR-D, TMB, and circulating tumor 
DNA (ctDNA) panel testing.

MATERIALS AND METHODS

The Korean Society of Medical Oncology (KSMO) and the 
Korean Society of Pathologists (KSP) have collaborated to develop 

subsequent clinical practice recommendations. These focus on 
key questions not addressed in the previous guidelines for NGS-
based genetic testing and the molecular tumor board from the 
KSMO and Korean Cancer Study Group (KCSG) Precision 
Medicine Networking Group [1]. In March and April of 2022, 
the Steering Committee and Writing Committee were reestab-
lished. They were comprised of medical oncologists, pathologists, 
and bioinformaticians convened by KSMO, KCSG, and KSP. 
Two main issues were addressed: the proper recommendations 
for NGS-based genetic testing in solid cancers, and the classifi-
cation level determination of genes applicable in Korea. The 
committees initially conducted a survey to assess the appropri-
ateness of key questions, achieving consensus through feedback 
from all committee members, to confirm the final selection of key 
questions. Subsequently, recommendations for these questions 
were drafted by the Steering Committee and further refined 
through extensive discussions with all committee members dur-
ing a comprehensive workshop in September 2022. These modi-
fied recommendations were then finalized through a final survey 
in November 2022. Additionally, the Writing Committee clas-
sified actionable genes by cancer type using the Korean Precision 
Medicine Networking Group (KPMNG) scale for clinical action-
ability of molecular targets (Table 1). The references for deter-
mining the actionability of target genes include case series and 
clinical trials from all phases (phase I, II, III) published up to 
August 31, 2023. Studies that were part of basket trials were 
also considered for inclusion. Furthermore, significant abstracts 
from clinical trials presented at the American Society of Clinical 
Oncology Annual Meeting and the European Society for Medi-
cal Oncology (ESMO) Congress were incorporated. Subsequent-
ly, these gene lists, along with their corresponding references, 
were shared with disease-specific divisions within KCSG and 
KSP, where feedback and input from these committees were in-

Table 1. KPMNG scale of clinical actionability of molecular target (K-CAT) [1] 

Level Clinical implication Required level of evidence

1 Treatment should be considered standard of care MFDS, FDA, EMA or equivalent-approved drug OR 
  Prospective, randomized, phase III trials showing the benefit of survival endpoints

2 Treatment would be considered Prospective phase I/II trials show clinical benefita

3
Clinical trials to be discussed with patients A: Retrospective study or case series show potential clinical benefit in a specific tumor type  

B: Clinical studies show potential clinical benefit in other indications
4 Preclinical data only, lack of clinical data Preclinical evidence suggests the potential benefit
G Suspicious germline variant on tumor tissue NGS Suggestive actionable germline variant on tumor tissue testing
R Predictive biomarker of resistance FDA-recognized predictive biomarker of resistance

KPMNG, Korean Precision Medicine Networking Group; K-CAT, KPMNG scale of Clinical Actionability of molecular Targets; MFDS, Ministry of Food and Drug 
Safety; FDA, U.S. Food and Drug Administration; EMA, European Medicines Agency; NGS, next-generation sequencing.
aProspective phase I/II trials supporting level 2 targets include clinical trials across tumor types such as basket trials. In this case, the clinical benefit needs to 
be judged by expert consensus. 
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corporated to further refine the rankings. The lists underwent one 
final review and confirmation by the entire committee. The final-
ized recommendations were presented at the 2023 KSMO annual 
meeting and announced at the 2023 KSP annual meeting. These 
recommendations have received endorsements from both KSMO 
and KSP.

KEY QUESTIONS AND RECOMMENDATIONS 

Question 1. What are the appropriate recommendations for 
NGS-based genetic testing in solid cancers?

Recommendation 1. NGS-based genetic testing is recommend-
ed for patients with advanced or metastatic solid cancers who 
are eligible for systemic treatments. 

There is mounting evidence that NGS-based matched treat-
ments enhance outcomes in patients with advanced or metastatic 
cancers [2-6]. Even in tumor types like breast cancer, where the 
role of NGS has traditionally been less defined, a recent study 
has shown improved treatment outcomes when patients were 
matched to appropriate therapies through comprehensive ge-
nomic analysis, including NGS [7].

Genomic testing should be conducted in patients with ad-
vanced or metastatic solid cancers if there are approved treat-
ments matching genomic biomarkers by a regulatory authority. 
For instance, several genetic tests, including those for EGFR, 
ALK, ROS1, BRAF, MET, KRAS, ERBB2, and RET, should be 
conducted in patients with non-squamous non–small cell lung 
cancer (NSCLC). In cases where multiple gene tests are required, 
NGS can efficiently utilize tumor tissue compared to testing in-
dividual genes. The National Comprehensive Cancer Network 
guideline for NSCLC also recommends panel-based genomic 
testing by NGS [8]. The use of a multi-gene panel by NGS is 
also recommended for tumors like ovarian cancer, prostate can-
cer, and pancreatic cancer. Testing for homologous recombina-
tion repair (HRR) related genes is required for these types of can-
cers to inform the use of poly(ADP-ribose) polymerase (PARP) 
inhibitors. Even for patients with cancers in which actionable 
genetic alterations are rarely found, NGS is recommended, tak-
ing into account tumor-agnostic biomarkers. MSI-H/MMR-D, 
TMB-H, BRAF V600E, RET fusion, and NTRK fusions have 
been approved by the U.S. Food and Drug Administration (FDA) 
as tumor-agnostic biomarkers [9-20]. In Korea, matched treat-
ments for tumors with MSI-H/MMR-D and NTRK fusions have 
been approved. 

If a biomarker-matched treatment showing clinical benefit 

has not yet received regulatory approval, we strongly encourage 
patients to participate in clinical trials based on molecular pro-
files from NGS. Our goal is to provide maximum treatment op-
tions for individual patients with advanced or metastatic cancer. 
The probability of detecting actionable genetic alterations using 
NGS varies based on the cancer type [2]. Given that the poten-
tial benefits of NGS may vary among individuals, it is essential 
to discuss its aims and limitations with the patient. Furthermore, 
NGS is not recommended when systemic treatment is unfeasi-
ble due to factors including the patient’s performance status, 
comorbidities, and socioeconomic conditions.

       
Recommendation 2. NGS-based genetic testing can be recom-
mended for the pathological diagnosis of solid cancers.

Precise pathological diagnosis is a fundamental component of 
precision oncology and in predicting prognosis for patients with 
solid cancer. Notably, in the recently published classification of 
tumors by the World Health Organization (WHO), the diagnosis 
of tumors defined by genetic alterations is gradually expanding. 
Consequently, there are increasing cases in which a final patho-
logical diagnosis is made based on NGS results. In addition, 
OncoKB [21], which is widely referred to in the interpretation 
of genetic alterations, provides information about diagnosis of 
hematologic malignancy by classifying the genetic alterations 
into ‘Diagnostic’ Level Dx1 (required for diagnosis), Dx2 (sup-
ports diagnosis), and Dx3 (investigational diagnosis). It is antici-
pated that this trend will soon be reflected in the diagnosis of sol-
id cancers. We will briefly discuss the application of NGS in the 
diagnosis of bone and soft tissue sarcoma, renal cell carcinoma, 
and central nervous system tumors, using these as representatives.

       
Bone and soft tissue sarcomas 

As more than half of soft tissue tumors and approximately a 
quarter of bone tumors harbor recurrent genetic alterations [22], 
molecular analysis is a strong diagnostic tool for the evaluation 
of bone and soft tissue sarcomas. There are several advantages of 
using NGS: simultaneous examination of multiple genomic re-
gions, low-level tumor sample requirement and intuitive visu-
alization of results [23]. NGS panels designed for sarcoma diag-
nosis utilize primers for the detection of fusions, amplifications, 
deletions and point mutations, which broadly cover genetic al-
terations in various sarcoma types. In daily practice, pathologists 
often encounter cases in which NGS provides the precise diag-
nosis by confirming or excluding differential diagnoses. Some 
cases can be even diagnosed toward unsuspected entities on the 
microscopic examination after NGS analysis [24]. 
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NGS analysis may be applied for differential diagnosis of bone 
and soft tissue sarcomas as follows: (1) low-grade central osteo-
sarcoma (MDM2) vs. fibrous dysplasia (GNAS); (2) chondro-
blastic osteosarcoma (chromosomal instability) vs. chondrosar-
coma (IDH1/2); (3) malignant peripheral nerve sheath tumor 
(CDKN2A) vs. atypical neurofibroma; (4) liposarcoma (MDM2) 
vs. atypical pleomorphic lipomatous tumor (RB1); (5) alveolar 
rhabdomyosarcoma (PAX3/7::FOXO1) vs. embryonal rhabdo-
myosarcoma (mutations in RAS-MAPK pathway); (6) tumors 
of uncertain differentiation (Ewing sarcoma, round cell sarcoma 
with EWSR1-non-ETS fusions, CIC-rearranged sarcoma, sarcoma 
with BCOR genetic alterations, synovial sarcoma, alveolar soft 
part sarcoma, extraskeletal myxoid chondrosarcoma, clear cell 
sarcoma of soft tissue, etc.)

       
Renal cell carcinoma 

NGS-based genetic panel test can be recommended for the 
pathological diagnosis of molecularly defined renal cell carcino-
ma (RCC), which includes fumarate hydratase (FH)–deficient 
RCC, succinate dehydrogenase (SDH)–deficient RCC, TFE3-
rearranged RCC, TFEB-rearranged or TFEB-amplified RCC, 
ELOC (formerly TCEB1)-mutated RCC, SMARCB1 (INI1)-
deficient RCC, and ALK-rearranged RCC according to the re-
cent 2022 WHO classification [25]. The molecular alterations 
of these renal tumors are as follows: biallelic FH mutation/inac-
tivation in FH-deficient RCC; inactivating mutations of one of 
SDH genes, most commonly SDHB, followed by SDHA and 
SDHC, and rarely SDHD in SDH-deficient RCC; translocations 
involving TFE3 in TFE3-rearranged RCC; translocations in-
volving TFEB in TFEB-rearranged RCC; TFEB amplification 
in TFEB-amplified RCC; inactivating mutations exclusively at 
TCEB1 Y79 in ELOC (formerly TCEB1)-mutated RCC; trans-
locations or deletions involving 22q11.23 in SMARCB1 (INI1)-
deficient RCC; translocations involving ALK in ALK-rearranged 
RCC. In addition, NGS-based genetic panel test may also be 
recommended for morphologically defined renal tumors with 
characteristic molecular alteration. Clear cell RCC is character-
ized by the loss of chromosome 3p accompanied by the inacti-
vation mutation or methylation of the remaining VHL gene. 
Papillary RCC commonly shows gains of chromosomes 7 and 
17, and loss of the Y chromosome with MET alterations in the 
low-grade tumor. Chromophobe RCC has losses of multiple 
chromosomes including 1, 2, 6, 10, 13, 17, 21, and Y. Eosino-
philic solid and cystic RCC can show TSC gene mutations or 
biallelic losses.

Central nervous system tumor 

With the development of research techniques such as NGS, 
our understanding of the molecular and clinicopathological char-
acteristics of brain tumors has advanced greatly. Based on these 
changes, following the 2016 Central Nervous System (CNS) 
WHO classification revised 4th edition [26] and cIMPACT-
NOW [27], the 2021 CNS WHO classification 5th edition [28] 
fully included the molecular genetic characteristics of tumors in 
the WHO classification of brain tumors. In the 2021 CNS WHO 
classification, several molecular genetic characteristics such as 
gliomas, glioneuronal tumors, ependymomas, embryonic tumors 
(medulloblastoma, etc.), and meningiomas were introduced into 
the diagnostic criteria. Molecular genetic characteristics included 
in the diagnostic criteria range from those that can be identified 
with a single test (sequencing, fluorescence in situ hybridization, 
etc.) to those that require integrated identification of various 
genes involved in a specific pathway, as well as those that identi-
fy chromosomal arm-level copy number alterations. To cover all 
of these, NGS testing is essential. In addition, these molecular 
classifications determine the diagnosis of the tumor and further 
determine the WHO grade, which is a basic brain tumor grad-
ing system that determines the treatment strategy. The use of 
traditional histopathological morphological classification alone 
without NGS testing can mislead patients’ treatment strategies.

Recommendation 3. NGS-based genetic testing can be re-
peated in patients with solid cancer in case of disease recurrence 
or development of drug resistance. 

Acquired resistance inevitably occurs with the growing use of 
targeted agents targeting various driver oncogenes. Representa-
tively, we have seen the successful development of osimertinib, 
the third-generation epidermal growth factor receptor (EGFR) 
tyrosine kinase inhibitor (TKI) during the last decade [29]. At 
the time of drug development, osimertinib was developed for the 
patients who revealed the acquired EGFR threonine to methio-
nine at codon 790 (T790M) mutation at the time of treatment 
failure with first- or second-generation EGFR TKI [30]. There-
fore, the detection of EGFR T790M has been crucial for making 
treatment decisions in patients who experienced treatment fail-
ure with first- or second-generation EGFR TKIs [8]. Apart from 
EGFR T790M, other types of acquired resistance mechanisms 
were revealed by NGS, such as ERBB2 amplification or MET 
amplification [31]. Given the recent memorial imprint of resis-
tance mechanism discovery, we have started using repeated NGS 
to detect acquired resistance in on-treatment tumor tissue, as well 
as in liquid biopsy samples.
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Generally, acquired resistance can be classified into two cate-
gories: (1) target-dependent, such as target gene mutations, and 
(2) target-independent, such as gene aberrations in bypass path-
ways [32]. Beyond the EGFR T790M mutation, the EGFR 
C797S mutation is one of the most common EGFR-dependent 
resistance mechanisms against osimertinib [33]. MET amplifi-
cation is another type of bypass pathway resistance mechanism 
across oncogene-driven subsets of NSCLC [34]. The EML4::ALK 
fusion, occurring in 3%–7% of all NSCLC cases, is currently 
treated with alectinib or brigatinib, the second-generation ALK 
TKIs, which are the standard treatments for treatment-naïve 
ALK-positive NSCLC patients [35-37]. ALK G1202R, solvent 
front mutation affecting drug binding to active site, is the most 
common target-dependent mutation [38]. Detecting the ALK 
G1202R mutation through NGS enables the prediction of a 
notable response with subsequent lorlatinib. NTRK fusion is a 
tumor agonistic driver oncogene, detected in less than 1% of 
solid cancers. With introduction of larotrectinib and entrectinib 
in clinic, several target-dependent point mutations were noted, 
which can be found by NGS [19,20]. Repotrectinib (TPX-0005) 
has demonstrated anti-tumor efficacy in patients previously treat-
ed with NTRK-targeting TKIs and who harbor target-depen-
dent TRK mutations [39]. 

Since the 2000s, the clinical use of NGS has expanded beyond 
the detection of driver oncogenes. It has paved the way for the 
discovery of novel targets associated with acquired resistance and 
provided valuable insights into potential targets for the next 
generation of targeted therapeutics. However, it’s important to 
acknowledge certain limitations associated with the repetition of 
NGS testing. Challenges include the increased cost, difficulties 
in obtaining repeated tumor biopsies, and associated risks. Ad-
ditionally, the likelihood of identifying actionable targets at the 
point of resistance can vary depending on the specific cancer type 
and drugs, with potential restrictions in drug availability. None-
theless, it remains evident that NGS can play a crucial role in 
helping inform subsequent treatment decisions for certain pa-
tients who have experienced treatment failure with targeted 
therapy. 

       
Question 2. How can we determine the classification level 
of genes applicable in Korea?

Advancements in NGS technologies have facilitated the iden-
tification of driver mutations in cancer, prompting a shift from 
a histology-based to a molecular-based approach in cancer treat-
ment. Simultaneously, the advent of targeted therapies has al-
lowed for treatments based on genetic alterations irrespective of 

the tumor’s origin. This concept, known as tissue-agnostic indi-
cation, has demonstrated promising results in recent studies and 
has become a crucial element in the standard care for cancer. 
Currently, the tissue-agnostic indications approved by the FDA 
are listed in Table 2 [9-20,40].

Taking into account both the evidence level of clinical research 
and clinical benefit, the committee members classified actionable 
genes for each type of cancer based on their level using KPMNG 
scale of Clinical Actionability of molecular Targets (K-CAT). 
We also included certain genes, such as POLE in endometrial 
cancer, that are clinically significant and thus necessitate test-
ing. The actionable gene lists for NSCLC, breast cancer, esopha-
geal cancer, stomach cancer, colorectal cancer, head and neck 
cancer, pancreatic cancer, biliary tract cancer, endometrial cancer, 
urothelial cancer, and kidney cancer are provided in Tables 3–17 
[11-15,29,36,37,41-190]. Each table included genes correspond-
ing to levels 1 through 3A.

Additional topics

Homologous recombination deficiency 

Genomic instability is one of the most frequent underlying 
features of carcinogenesis, and defective DNA repair has been 
described as a cancer hallmark [191]. HRR is a series of interre-
lated pathways that function in the repair of DNA double-strand 
breaks and interstrand crosslinks [192]. Important genes involved 
in the HRR process include BRCA1, BRCA2, RAD51, RAD51C, 
RAD51D, ATM, ATR, PALB2, MRE11, NBS1, BARD1, CHEK1, 
and CHEK2 [193,194]. However, it is essential to note that the 
list of genes known to be related to the HRR process is contin-
ually evolving through ongoing research. A defect in the HRR 
pathway has been linked to several cancers, including breast, 
ovarian, prostate and pancreatic cancer [117,142,153,195], and 

Table 2. List of genetic alterations with tumor agnostic indications 
by FDA

Gene/Alteration Matched treatment K-CAT Reference

NTRK fusion Entrectinib
Larotrectinib

1 [19,20]

BRAF V600E Dabrafenib+trametinib 
  (except colorectal cancer)

1 [11-17]

RET fusion Selpercatinib 1 [18]
Microsatellite instability– 
   high/Mismatch repair 
deficiency 

Pembrolizumab 1 [9,40]

High tumor mutation  
  burden 

Pembrolizumab 1 [10]

FDA, U.S. Food and Drug Administration; K-CAT, Korean Precision Medi-
cine Networking Group scale of Clinical Actionability of molecular Targets. 
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HRD can make tumors more sensitive to platinum-based che-
motherapy and PARP inhibitors [196,197]. Thus, it is critical 
to develop methods for determining the HRD status in order to 
maximize clinical benefit from these drugs. 

There are three main categories of available tests for HRD 
analyzing (1) the etiology of HRD (mutation/methylation se-
quencing), (2) the current homologous recombination status 
(functional assays), and (3) prior HRD exposure (genomic scars). 
Each type of cancer (ovarian, breast, pancreatic and prostate) re-
quires different tests. The germline BRCA 1/2 mutation test is 
useful for predicting response to PARP inhibitors in ovarian and 
breast cancer [76,143-146,198]. In ovarian cancer, tumor (incor-
porating germline and somatic) as well as somatic BRCA 1/2 
mutation testing exhibit good clinical validity by reliably iden-
tifying the subset of patients who benefit from PARP inhibitor 
therapy [146-148]. Evidence regarding the benefit of mutation 
tests for each non-BRCA HRR gene for predicting responses to 
PARP inhibitors remains insufficient in ovarian cancer. HRD 
tests using genomic instability scores (GIS) or loss of heterozy-
gosity (LOH) scores are useful for predicting the responses to 
PARP inhibitors in ovarian cancer patients without BRCA 1/2 
mutation [142,144,146]. The GIS from myChoice CDx (Myri-
ad Genetics) represents the sum of LOH, large-scale transitions, 
and telomeric allelic imbalance and a GIS of 42 has been estab-
lished as the threshold to determine HRD positivity [199,200]. 
To date, GIS is the only genomic scar assay that has been evalu-
ated in first-line randomized controlled trials for ovarian cancer 

[142,143]. The LOH test (FoundationOne CDx, Foundation 
Medicine) uses NGS to determine the percentage of genomic 
LOH and LOH-high is defined with a cut-off of 16% or higher, 
referencing The Cancer Genome Atlas data [201]. In metastatic 
pancreatic cancer, a germline BRCA 1/2 mutation test is recom-
mended to evaluate the potential benefits of PARP inhibitors as 
maintenance treatment for patients whose tumors have not pro-
gressed after first-line platinum-based chemotherapy [117]. In 
castration-resistant prostate cancer, it is recommended to assess 
by sequencing for BRCA 1/2 mutations, at a minimum, using 
germline and/or somatic tumor DNA [153,202]. To date, insuf-
ficient evidence is available regarding the benefit of performing 
a HRD functional assays to predict response to PARP inhibitor; 
however, the potential for using functional assays in conjunction 
with HRR gene tests and genomic tests should be evaluated. 
While there have been multiple NGS assays to evaluate HRD 
status, only a limited number of tests are clinically accepted, and 

Table 3. List of genomic alterations level 1/2/3A according to K-
CAT in advanced NSCLC

Gene Alteration Prevalence (%) K-CAT Reference

EGFR Exon 19 in-frame deletions,  
   L858R, G719X, L861Q, 
S761I

30–46 1 [41-45]

T790M 50 of treated  
   EGFR mutant 
NSCLC

1, R [29,46,47]

Exon 20 in-frame insertion 3 1 [48,49]
BRAF V600E 2–4 1 [12,13,50]
ALK Rearrangement/Fusions 3–5 1 [36,37,51,52]
KRAS G12C 13 1 [53,54]
MET Exon 14 in-frame deletions,  

  Exon 14 splice mutations
3–4 1 [55,56]

Amplification 3–5 2 [56]
RET Rearrangement/Fusions 1.7 1 [57,58]
ROS1 Rearrangement/Fusions 2.6 1 [59,60]
ERBB2 Exon 20 in-frame insertion 2.3 1 [61-64]

Amplification 2.4–38 2 [65,66]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Ac-
tionability of molecular Targets; NSCLC, non–small cell lung cancer.

Table 4. List of genomic alterations level 1/2/3A according to K-
CAT in advanced breast cancer

Gene Alteration Prevalence (%) K-CAT Reference

ERBB2 Amplifications 15–20 1 [67-71]
Oncogenic mutations 4 2 [72,73]

PIK3CAa Oncogenic mutations 30–40 1 [74,75]
BRCA1/2 Germline oncogenic  

  mutations
4 1 [76,77]

BRCA1/2b Somatic oncogenic  
  mutationsc

3 2 [78-80]

PTEN Oncogenic mutations 7 2 [81,82]
ESR1 Oncogenic mutations  

   (mechanism of  
resistance)

10 R [83]

AKT1 E17K 5 2 [82,84]
PALB2d Germline oncogenic  

  mutations
0.5–1 2 [79,85]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Ac-
tionability of molecular Targets; PARP, poly(adenosine diphosphate [ADP]–
ribose) polymerase; HRD, homologous recombination deficiency. 
aThis applies only to breast cancer that is hormone receptor-positive/
HER2-negative and has mutations including E542K, E545A, H1047R, 
H1047Y, Q546E, H1047L, Q546R, E545G, E545D, E545K, C420R. Other 
oncogenic mutations not included in this category, caution is needed, since 
it is unknown whether other mutations are associated with response to 
phosphoinositide 3-kinase inhibitor therapy; bPhase III trials of PARP inhibi-
tors have been conducted in patients with germline BRCA mutations, and 
their therapeutic effects have been confirmed. In some studies, the effects 
of PARP inhibitors have also been reported in patients with somatic BRCA 
mutations, and somatic tumor sequencing can identify many germline 
BRCA mutations; cIn addition to BRCA 1/2, there are several other genes 
associated with homologous recombination deficiency, including ATRX, 
BLM, BRIP1, CHEK2, FANCA/C/D2/E/F/G/L, MRE11A, NBN, PALB2, and 
RAD50. Although the discovery frequency of each gene is very low, they 
are collectively found in approximately 8% of all breast cancers; dThere are 
multiple germline mutations associated with HRD in breast cancer patients, 
but this table only includes the two most frequent ones.
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their technical details including evaluation criteria are unclear. 
Many methodological approaches have been proposed to mea-
sure HRD status using NGS data of various types, including 
whole genome sequencing (WGS), whole exome sequencing 
(WES) and targeted sequencing [203,204]. However, the ab-
sence of congruent measure remains a challenge to validate their 
reliability and consistency. Although WGS has not yet been ap-
proved for the diagnosis of HRD, it might become a promising 
diagnostic tool for HRD in the near future.

Microsatellite instability-high/mismatch repair deficiency 

MSI-H/MMR-D has become an important biomarker of eli-
gibility for immune checkpoint inhibitor (ICI) therapy as the 
FDA has approved ICIs for patients with unresectable or meta-
static MSI-H/MMR-D solid cancers regardless of tumor types 
[9,40,205]. The polymerase chain reaction (PCR)–based assess-
ment of selected microsatellite loci in a patient’s tumor and 

matched non-neoplastic tissue had been accepted as the gold 
standard method before the era of NGS. Nevertheless, the PCR-
based MSI test can be misleading in certain cases because the se-
lected microsatellite loci (typically, 5 to 8 loci) may not cover all 
affected microsatellite regions [206]. Alternatively, MMR-D can 
be inferred through immunohistochemistry (IHC) of MMR pro-
teins, such as MLH1, MSH2, MSH6, and PMS2, since most 
MMR-deficient tumors exhibit a loss of MMR protein expres-
sion. However, there are limitations to detecting MMR-D by the 
IHC method. Certain tumors harboring pathogenic missense or 

Table 5. List of genomic alterations level 1/2/3A according to K-
CAT in advanced esophageal cancer

Gene Alteration Prevalence (%) K-CAT Reference

ERBB2 Amplification 3.9–10 2 [86]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Ac-
tionability of molecular Targets. 

Table 6. List of genomic alterations level 1/2/3A according to K-
CAT in advanced stomach cancer

Gene Alteration Prevalence (%) K-CAT Reference

ERBB2 Amplification 15 1 [87-89]
FGFR2a Amplification 5 2 [90]
MET Amplification 2–5 2 [91]
EGFR Amplification 5–10 3A [92]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Ac-
tionability of molecular Targets; ctDNA, circulating tumor DNA. 
aFGFR2b overexpression or FGFR2 amplification by ctDNA analysis.

Table 7. List of genomic alterations level 1/2/3A according to K-
CAT in advanced colorectal cancer

Gene Alteration Prevalence (%) K-CAT Reference

KRAS 
NRAS

Oncogenic mutations 
Oncogenic mutations 

40
3–5

R
R

[93,94]
[95,96]

BRAF V600E 5–10 1 [96-98]
Mismatch  
   repair 
deficiency

MSI-H/MMR-D 4–5 1 [99,100]

ERBB2 Amplification 4–5 1 [101]
KRAS G12C 3 2 [102,103]
POLE Exonuclease domain  

  mutations
1–3 2 [104-106]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Ac-
tionability of molecular Targets; MSI-H, microsatellite instability–high; MMR-
D, mismatch repair deficiency.

Table 8. List of genomic alterations level 1/2/3A according to K-
CAT in advanced head and neck cancer

Gene Alteration Prevalence (%)a K-CAT Reference

NOTCH1, 2, 3 Oncogenic  
  mutations

10–12 2 [107,108]

ERRB2 Amplification 30–40 2 [109-111]
FGFR1, 3 Amplification/ 

   Oncogenic 
mutations

1–7 2 [112-114]

MET Amplification 1 3A [115,116]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Ac-
tionability of molecular Targets.
aThe above prevalence is about the representative subtype among various 
subtypes of head and neck cancer.

Table 9. List of genomic alterations level 1/2/3A according to K-
CAT in advanced pancreatic cancer

Gene Alteration Prevalence (%) K-CAT Reference

BRCA 1/2 Germline oncogenic  
  mutations

1–4 1 [117,118]

PALB2 Oncogenic mutations 0.6 2 [118]
KRAS G12C 2–3 2 [119,120]
PIK3CA Oncogenic mutations 3 3A [121]
ERBB2 Amplifications/ 

  Oncogenic muta-
tions

1–2 3A [72,122]

ALK Rearrangement/ 
  Fusions

< 1 3A [123]

NRG1 Rearrangement/ 
  Fusions

1 3A [124]

ROS1 Rearrangement/ 
  Fusions

< 1 3A [125]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Ac-
tionability of molecular Targets.

Table 10. List of genomic alterations level 1/2/3A according to K-
CAT in advanced biliary tract cancer

Gene Alteration Prevalence (%) K-CAT Reference

IDH1 Oncogenic mutations 10–23 1 [126,127]
FGFR2 Rearrangement/Fusions 8–14 1 [128-130]
BRAF V600E 5 1 [14,15]
ERBB2 Amplification 10 2 [131-133]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Ac-
tionability of molecular Targets. 
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in-frame insertion/deletion mutations of MMR genes may still 
show intact MMR protein expressions, and interpretation errors 
may occur when the staining quality is poor.

Since NGS is now widely used in clinical practice, it has been 
investigated whether NGS can be used to detect MSI-H/MMR-
D in clinical setting. Numerous validation studies have demon-
strated that NGS can accurately detect pathogenic or likely 

pathogenic mutations affecting MMR genes and can determine 
MMR-D reliably. Thus, there is a consensus that NGS can re-
place the standard PCR-based MSI test. NGS can detect MSI-H/
MMR-D in various ways [207]. Several computational tools for 
detection of MSI-H/MMR-D using NGS data are available: 
mSINGS [208], MSIsensor [209], MANTIS [210], and MOSA-
IC [211]. Furthermore, NGS can detect MSI-H/MMR-D even 
in the absence of the patient’s matched normal tissue [212,213]. 
Furthermore, pathogenic or likely pathogenic MMR gene muta-
tions detected by NGS testing may select candidates of germline 

Table 13. List of genomic alterations level 1/2/3A according to K-
CAT in advanced urothelial cancer

Gene Alteration Prevalence (%) K-CAT Reference

FGFR3 Oncogenic mutations  
   Rearrangement/ 
Fusions

13–15 1 [150]

FGFR2 Rearrangement/ 
  Fusions

Unknown 1 [150]

ERCC2 Oncogenic mutations 9–12 3A [151,152]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Ac-
tionability of molecular Targets.

Table 14. List of genomic alterations level 1/2/3A according to K-
CAT in advanced prostate cancer

Gene Alteration Prevalence (%) K-CAT Reference

BRCA2 Germline and/or  
   somatic  
oncogenic  
mutations 

3–13 1 [153,154]

BRCA1 Germline and/or  
   somatic  
oncogenic  
mutations 

1 1 [153,154]

ATM
Oncogenic  
  mutations 

6–7 1 [153,154]

BRIP1, BARD1,  
   CDK12, CHEK1, 
CHEK2, FANCL,  
PALB2, RAD51B, 
RAD51C, 
RAD51D, RAD54L

Oncogenic  
  mutations

< 1–5 1 [153,154]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Ac-
tionability of molecular Targets.

Table 15. List of genomic alterations level 1/2/3A according to K-
CAT in advanced kidney cancer

Gene Alteration Prevalence (%) K-CAT Reference

VHL Germline oncogenic  
  mutations

0.2 1 [155]

FH Germline oncogenic  
  mutations

0.5 3A [156,157]

ALK Rearrangement/Fusions 0.3–0.5 3A [158]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Ac-
tionability of molecular Targets.

Table 12. List of genomic alterations level 1/2/3A according to K-
CAT in advanced ovarian cancer

Gene Alteration Prevalence (%) K-CAT Reference

BRCA 1/2 Oncogenic mutations 5–15 1 [142-149]
HRD score GIS, LOH 50 1 [142-144, 

  146,148]
AKT1 E17K 2 2 [84]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Ac-
tionability of molecular Targets; HRD, homologous recombination deficien-
cy; GIS, genomic instability scores; LOH, loss of heterozygosity.

Table 11. List of genomic alterations level 1/2/3A according to K-
CAT in advanced endometrial cancer

Gene Alteration Prevalence (%) K-CAT Reference

ERBB2 Amplification 30 of uterine  
   serous  
carcinoma

2 [134]

AKT1 E17K 2 2 [84]
POLEa Oncogenic mutations 5–15 NA [135,136]
TP53ab Oncogenic mutations 5–15 NA [135]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Ac-
tionability of molecular Targets; NGS, next-generation sequencing; IHC, im-
munohistochemistry; TCGA, The Cancer Genome Atlas; MMR, mismatch 
repair.
aAdjuvant treatment of endometrial cancer based on molecular classifica-
tion; bConsidering the coverage limitations of NGS for detecting p53 loss, a 
combined IHC approach is recommended. The TCGA approach results in 
the molecular stratification of endometrial cancer (EC) into four distinct mo-
lecular groups [137]; (1) ultramutated (> 100 mut/Mb) with pathogenic vari-
ations in the exonuclease domain of DNA polymerase epsilon (POLE)-ultra-
mutated (POLEmut), (2) hypermutated (10–100 mut/Mb), microsatellite-
unstable, (3) somatic copy number-high with frequent pathogenic variants 
in TP53, and (4) an MMR-proficient, low somatic copy number aberration 
subgroup with a low mutational burden. Extensive research on these surro-
gate markers has revealed a strong correlation with clinical outcome, thus 
proving their prognostic value [138-140]. POLEmut EC had generally has 
an excellent clinical outcome, while p53-abn EC has the worst, regardless 
of risk category, type of adjuvant treatment, tumor type, or grade. Adjuvant 
chemotherapy is beneficial in for patients with p53mut EC, while treatment 
de-escalation is being explored in patients with POLEmut EC [139], which 
exhibits a favorable outcome [141]. Consequently, all EC pathology speci-
mens should undergo molecular classification, independent of histological 
type, using well-established IHC staining for p53 and MMR proteins (MLH1, 
PMS2, MSH2, MSH6), in conjunction with targeted tumor sequencing 
(POLE hotspot analysis). While POLE hotspot analysis is currently unavail-
able in Korea, and most NGS panels include the POLE gene, it has been 
incorporated into the recommendations. Moreover, since IHC plays a well-
established role in identifying p53 mutations and NGS target sequencing of 
TP53 is insufficient to identify all loss of P53 function, IHC confirmation of 
p53 is recommended over NGS testing as a priority.
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genetic testing for Lynch syndrome. Finally, NGS-based MSI-H/
MMR-D testing may provide information about eligibility for 
immunotherapy in tumor types where MMR IHC and/or PCR-
based MSI tests have not been done during routine clinical practice.

Analysis of TMB by NGS panel

ICIs can enhance a durable anti-tumor immune response and 
prolong overall survival [214]. However, only a subset of the pa-
tients showed a dramatic response to immunotherapy, and the 
identification of predictive biomarkers was essential to identify 
responders to immunotherapy, such as programmed death-ligand 
1 expression, MSI-H/MMR-D and TMB-H [215-217]. TMB is 
defined as the number of somatic mutations (mut) per megabase 
(Mb) of genomic sequence [217]. TMB is a surrogate marker for 
making immunogenic neopeptides shown on the surface of tu-
mor cells by major histocompatibility complexes, which affect 
the anti-tumor immune response to ICIs [218,219].

In June 2020, the FDA authorized pembrolizumab for the 
treatment of adult and pediatric patients with unresectable or 
metastatic TMB-H (≥ 10 mut/Mb) solid tumors, as determined 

by FoundationOneCDx assay, that have progressed following 
prior treatment and who have no satisfactory alternative treat-
ment options [220]. Therefore, determining the TMB value and 
identifying TMB-H tumors are among the most critical aspects 
in the clinical NGS analysis.

Although the TMB calculation can vary according to the test 
assays, the gold standard method for TMB estimation is WES 
with tumor tissues and matched normal samples. However, since 
WES has limitations in terms of time and costs to apply in clini-
cal use, analytic methods and algorithms have been developed 
for calculating TMB from clinical targeted NGS panel tests 
[221,222]. Targeted NGS panel tests usually cover only a small 
limited size (about 1 to 2 Mb) of exonic regions, so sophisticated 
bioinformatic algorithms and statistical methods must be ap-
plied to filter out noise variants and artifacts caused by forma-
lin-fixed tissues. For tumor-only sequencing, which is currently 
conducted in most targeted gene panels in Korea, germline vari-
ants are filtered out using genomic information from public da-
tabases or data on allele frequency in normal populations to avoid 
TMB overestimation. In several studies, the evaluated TMB from 
targeted NGS panel testing showed a high correlation with the 
TMB calculated by WES using analytic techniques [221,222].

Since the targeted gene panels currently used in the clinic have 
different analysis pipelines for variant calling and apply various 
filtering criteria to select variants used in TMB calculation, TMB 
values vary among the tests, and the criteria for TMB-H are di-
verse [223]. Also, the distribution of TMB values and criteria 
for TMB-H are different by tumor type, even when calculating 
TMB with the same panel. In general, more than TMB of 10 
mut/Mb has been used for the definition of TMB-H tumors, 
but the reliable value of TMB-H can be different among the test 

Table 17. List of genomic alterations level 1/2/3A according to K-CAT in advanced sarcoma

Gene Alteration Prevalence (%) K-CAT Reference

KIT Oncogenic mutations ~75–80 in GIST 1 [174,175]
PDGFRA Oncogenic mutations ~8–10 in GIST 1 [175-177]
PDGFB Rearrangement/Fusions mostly COL1A1::PDGFB ~90 in DFSP 1 [178,179]
ALK Rearrangement/Fusions ~50 in IMT 1 [180-182]
SMARCB1 Deletion ~83 in ES 2 [183]
IDH1 Oncogenic mutations ~65 in chondrosarcoma 2 [184]
TSC2 Oncogenic mutations ~30 in PEComa 2 [185,186]
MDM2 Amplification ~90 in WDLPS/DDLPS; frequent in IS, low grade OSA 2 [187,188]
CDK4 Amplification ~90 in WDLPS/DDLPS; frequent in IS, low grade OSA 2 [187,189]
MET Oncogenic mutations, Rearrangement/Fusions,  

  Amplification
< 1% 2 [190]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of molecular Targets; GIST, gastrointestinal stromal tumor; DFSP, derma-
tofibrosarcoma protuberans; ES, epithelioid sarcoma; IMT, inflammatory myofibroblastic tumor; WDLPS/DDLPS, well-differentiated/de-differentiated liposar-
coma; IS, intimal sarcoma; OSA, osteosarcoma.

Table 16. List of genomic alterations level 1/2/3A according to K-
CAT in advanced melanoma

Gene Alteration Prevalence (%) K-CAT Reference

BRAF V600E/K 35–50 1 [11,159-162]
V600 (excluding V600E/K) ~5 1 [163]

KIT D579del and 12 other  
  oncogenic mutations

1–7 2 [164,165]

NRAS Oncogenic mutations ~20 2 [166,167]
BRAF Rearrangement/Fusions 3–7 3A [168,169]

K601, L597 < 1 3A [170-173]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Ac-
tionability of molecular Targets.
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panels and requires caution in interpreting the estimated TMB 
value. In some studies, the TMB of 17–20 mut/Mb is consid-
ered TMB-H and a candidate for immunotherapy conservatively 
[224]. Therefore, standardization of TMB analysis among test 
panels, validation of TMB-H tumors with different assays, and 
establishing reliable criteria for TMB-H will be needed for the 
further precise application of TMB analysis with the clinical tu-
mor NGS panels.

Clinical utility and limitations of ctDNA-based genetic panel tests 

using blood sample

As the growing number of druggable oncogenic drivers has 
been identified in solid cancer [225], ctDNA-based approach can 
be used as an alternative approach for facilitating the identifica-
tion of tumor tissue genotype. However, ctDNA can be influ-
enced by multiple preanalytical factors and the methodology of 
analysis [226]. Since the ctDNA detection rate is highly related 
to tumor burden and is affected by various factors such as plasma 
levels of ctDNA, assay sensitivity, and tumor biology, a negative 
result from the ctDNA test may not necessarily indicate a true 
negative. In particular, low analytical sensitivity may occur be-
cause ctDNA assay are performed solely on DNA derived from 
tumor cells [227]. Recent studies have reported that gene fusions 
and splice variants have higher detection rates when sequencing 
is performed with RNA transcripts [228,229]. In addition, in 
the case of copy number variations (CNVs), determining the 
presence of CNVs remains challenging due to its dependence on 
ctDNA fractions [230,231]. Hence, ctDNA-based test reports 
should include essential elements, including pre-analytical ele-
ments, sequencing results, potential factors related to the germ-
line variants, and limitations of assays to assist the interpretation 
of the report to the clinician [232].

ctDNA-based genotyping can be used as either complemen-
tary to tissue genotyping or as the first choice in certain circum-
stances. ctDNA-based genotyping has advantages over tissue-
based genotyping in a short turnaround time, invasiveness, and 
feasibility in serial assessment [233-235]. Due to the limitation 
of tissue-based genotyping, which can be affected by tissue ac-
cessibility or tumor purity, ctDNA-based genotyping can be 
conducted as initial genotyping in the rapidly growing aggres-
sive tumor when challenges or delays in sample acquisition are 
anticipated. In addition, the ctDNA-based genotyping first ap-
proach can be preferred for the evaluation of emerged resistance 
mechanism [236]. ctDNA-based genotyping can also be used as 
a complementary method, either concurrently or sequentially 
with tissue-based genotyping in case of incomplete tumor geno-

typing or foreseen inadequate results due to uncertain adequacy 
of tissue [237]. 

Before genotyping ctDNA sequences, the concentration of 
cell-free DNA in plasma can be used as a prognostic biomarker 
[238,239]. The sensitivity of ctDNA assay varies among the pri-
mary sites and tumor types and should be considered at apply-
ing ctDNA test in clinical use [240]. Similarly, the metastatic 
site of the tumor affects the ctDNA detection and should be taken 
into account for using ctDNA assay [241]. Additionally, MSI-H/
MMR-D and TMB-H, as determined by ctDNA assay, have been 
widely studied [242-244]. Improving the accuracy of the MSI 
detection and TMB calculation from ctDNA and defining reli-
able criteria for MSI-H/MMR-D and TMB-H in the ctDNA as-
say is anticipated to broaden the use of ctDNA tests.

CONCLUSION

NGS-based genetic testing has become an essential tool in 
treating patients with advanced solid cancers. This report pro-
vides clinical recommendations for the application of NGS in 
such patients, offering expert opinions on its diagnostic uses, 
and gene classification in accordance with K-CAT, while taking 
the domestic Korean context into consideration.

As cancer genomics advances and new therapies emerge, the 
current gene classification is subject to dynamic changes, and the 
application of NGS is anticipated to continuously evolve. Con-
sequently, healthcare providers and researchers are encouraged 
to stay abreast of the latest advancements in the field of preci-
sion oncology to ensure optimal patient care and further cancer 
research.
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