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Background and purpose: Artificial Intelligence (AI) models in radiation therapy are being developed with 
increasing pace. Despite this, the radiation therapy community has not widely adopted these models in clinical 
practice. A cohesive guideline on how to develop, report and clinically validate AI algorithms might help bridge 
this gap. 
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Methods and materials: A Delphi process with all co-authors was followed to determine which topics should be 
addressed in this comprehensive guideline. Separate sections of the guideline, including Statements, were written 
by subgroups of the authors and discussed with the whole group at several meetings. Statements were formulated 
and scored as highly recommended or recommended. 
Results: The following topics were found most relevant: Decision making, image analysis, volume segmentation, 
treatment planning, patient specific quality assurance of treatment delivery, adaptive treatment, outcome pre-
diction, training, validation and testing of AI model parameters, model availability for others to verify, model 
quality assurance/updates and upgrades, ethics. Key references were given together with an outlook on current 
hurdles and possibilities to overcome these. 19 Statements were formulated. 
Conclusion: A cohesive guideline has been written which addresses main topics regarding AI in radiation therapy. 
It will help to guide development, as well as transparent and consistent reporting and validation of new AI tools 
and facilitate adoption.   

Due to the increase in computational power and the emergence of big 
data, the field of artificial intelligence (AI) is rapidly developing. AI 
applications are already widely used, e.g., in natural language process-
ing, search engines and facial recognition software. AI has also entered 
the field of health care, and guidelines in this wider field are emerging 
[8,17,19,20,26,40,58,68,74,88–90]. Radiation therapy (RT), having a 
strongly data-driven workflow, is an active field of AI model develop-
ment. AI models have for example already been developed in the field of 
image reconstruction, volumetric segmentation, treatment planning and 
delivery, outcome prediction and quality assurance (QA). Despite the 
many efforts in this area, the RT community has not widely adopted 
these AI models in clinical practice and their availability, applicability, 
quality, generalizability, interpretability and safety are still a matter of 
concern. Based on our own experience we see this is partially due to the 
lack of a cohesive guideline on how to develop, report and clinically 
validate AI algorithms within the radiation therapy domain. 

This guideline provides an overview of the latest publications, 
focusing on already existing reviews per sub domain of AI in radio-
therapy. Based on the literature, knowledge and experience of the au-
thors, suggestions were given on how to develop and clinically validate 
new AI models for use in the radiation therapy domain and how to report 
their results scientifically and consistently. Consistent reporting enables 
fair comparisons of different models and benchmarking against existing 
approaches. 

Materials & methods 

This guideline aims to stimulate the development, validation and 
safe clinical implementation of AI in radiotherapy. 

There is no global consensus on the precise definition of AI. Machine 
Learning (ML) models and a sub-category of ML models called Deep 
Learning (DL) models, are the most widely known models and are the 
models focussed on in this report. Other models like large language 
models are not yet used in the radiation therapy domain and therefore 
not addressed here but have great potential [41,59]. 

Representing the international contribution and impact of this effort, 
the writing committee was formed with medical physicists, radiation 
oncologists, radiation therapists and research members from ESTRO, 
ASTRO and AAPM who all have ample experience within the field of AI 
for radiotherapy, either in research and/or a clinical setting, including 
software development in collaboration with industry. To determine the 
topics and subtopics for inclusion and the guideline structure, a Delphi 
process was followed [43]. Questionnaires were anonymously collected 
and the results were discussed as a group. Topics were included if at least 
70 % of members voted for it. For each topic, a subgroup formulated up 
to 3 Statements that were categorized as highly recommended or rec-
ommended, which were discussed at subsequent committee meetings. 
To give the readers of this guideline a good overview and limit the length 
of this guideline we have referenced some key reviews on specific topics 
without discussion the underlying original work in detail. The readers 
are encouraged to read those original papers if they want to know more 

details on the topic. 

Results 

The Delphi process took place between Q4 2021 and Q2 2022. After 
3 rounds, consensus was reached on the main structure of the report as it 
appears now. The questionnaires can be found in Appendix A. After 2 
rounds, most of the topics and subtopics were set and there were only a 
few details for which there were preferences, but agreement did not 
reach 70 %. For these details it was decided to continue with the pref-
erence topics. 

The following topics were found most relevant (Fig. 1): Decision 
making, image analysis, Volume segmentation, treatment planning, 
patient specific quality assurance of treatment delivery, adaptive treat-
ment, outcome prediction, training, validation and testing of AI pa-
rameters, model availability for others to verify, model QA/updates and 
upgrades, ethics. 

Decision making 

The decision-making process is a reasoning process based on as-
sumptions of values, preferences and beliefs of the decision-maker. De-
cisions are shared between the physician and patient, and decision 
modelling within healthcare could incorporate expert domain knowl-
edge, probabilistic reasoning and patient preferences. AI can guide 
decision-making in radiation oncology at different steps: Patient initial 
evaluation, clinical treatment strategy, dose prescription and toxicity 
prediction and management. 

Patient initial evaluation involves a consultation that takes into ac-
count the patient’s symptoms, medical history, examination, patholog-
ical, genomic and imaging data [18]. These will guide the radiation 
oncologist’s clinical treatment strategy. This strategy is typically guided 
by national and international guidelines combined with an intuitive 
prediction of the benefit and potential toxicities of a treatment, but AI 
could have a relevant role in that setting. Dose prescription is deter-
mined by internationally and/or nationally accepted standards whether 
they have been defined in clinical trials or not. Variations in tumour 
biology and radiosensitivity are not often considered. AI might enable 
the personalization of radiotherapy dose prescription by predicting the 
radiation sensitivity and toxicity [4,80]. Many models have been 
developed and published to predict treatment response or toxicity, but 
almost none are used in the daily routine. One reason for this is that they 
have not been validated. An example of a model that is used in daily 
routine is the Dutch Normal Tissue Complication Probability (NTCP) 
model to select patients for proton therapy [53]. Because these models 
should ultimately be used to define clinical treatment plans, from which 
the delivered dose will depend on, they need to be rigorously developed 
and externally validated. 

Statement 1: Decision-making should strictly rely on models created 
in accordance with published guidelines on development & in silico 
validation [40,74,88] (highly recommended). 
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Statement 2: Models used for decision-making should be validated 
through careful monitoring of patient’s conditions in terms of toxicity 
and tumour response through the treatment [20] (highly recommended) 
and in prospective clinical trials [1858,65] when possible 
(recommended). 

Image analysis 

Image analysis include a variety of processes which are amenable to 
applications of DL. While this area of research and implementation is 
expanding rapidly, existing applications may be generally grouped into 
the acquisition/reconstruction, generation of synthetic images and 
image-registration. 

Acquisition and reconstruction methods have been widely investi-
gated in the diagnostic literature, resulting in accelerated acquisition 
times, reduced artifacts, and/or image quality which is equivalent to 
standard procedures. For Computer Tomography (CT), an overview of 
DL techniques for image denoising, metal artifact reduction and super- 
resolution imaging is presented by Li et al. [55]. It is imperative that 
QA is performed when using DL augmented reconstruction to ensure 
that CT Hounsfield unit based dose calculation is not altered. DL-based 
approaches for cone beam CT have generated higher quality images and 
reduce motion artefacts, allowing for accurate dose deposition assess-
ment, with quality comparable to standard CT [78]. 

DL reconstruction methods for Magnetic Resonance Imaging (MRI) 
have substantially improved reconstruction capacity [11]. A potentially 
transformative application of DL is reconstructing multiple sequences 
from a single acquisition, using a technique referred to as “MR finger-
printing (MRF)”. MRF leverages pseudorandom acquisition parameters 
to match signal trajectories to denote an identifiable unique pattern- 
match (or “fingerprint”) on a voxelized basis, affording simultaneous 
generation of multiple MRI signals (such as T1, T2, diffusion, etc.) for 
each tissue voxel from a single scan. The use of DL models for pattern- 

matching has allowed the speed and robustness of these MRF methods 
to be substantially enhanced and raises the potential for reproducible 
DL-based multiparametric MRF for radiotherapy [16,38,81]. The gen-
eral field of DL for MR-guided radiotherapy is still young. With DL 
models for various parts of the workflow for an MR-linac but also for x- 
ray or ultrasound based systems, real-time motion management might 
become a reality [60,69]. These techniques should be at a minimum 
benchmarked to standard acquisitions for QA before implementation in 
the clinic. 

With regard to Positron Emission Tomography-CT (PET-CT) and also 
PET-MR, deep learning approaches have improved image quality and 
use spatial information to account for time dependent motion variance 
[95]. Consequently, these improvements have to be taken into account 
when delineating targets or with therapy response assessment, as most 
published data is still based on non-motion correction/Time-of-Flight 
techniques. 

Comparatively extensive radiotherapy specific research has been 
undertaken on the generation of comparable images from alternative 
modalities. “Pseudo-” image generation involves training a deep 
learning platform with comparable acquisitions using another format or 
modality (e.g., matched MR and CT images) and constructing a vir-
tualized version of one of the imaging pairs. Generative adversarial 
networks (GANs) have accelerated this process. It is advantageous as a 
method of forgoing CT-simulation by allowing acquired pre-treatment 
MR images or image guided RT images (e.g., MR-linac or cone-beam 
CT platforms) to be used directly for dose calculation. The vast major-
ity of these efforts have used data from a single or limited number of 
centres, with only a few reports with external validation [77]. GAN- 
based methods are potentially susceptible to dependencies on training 
data, and therefore should necessarily undergo assessments for gener-
alizability before implementation outside of the original use case. For 
example, a pseudo-CT application using a particular slice thickness 
reconstruction standardized at one facility, may show significant 

Fig. 1. Main radiation therapy topics considered in this guideline.  
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performance differences when applied to CTs with a different institute’s 
acquisition protocol. Jabbarpour et al. reported a multicentric applica-
tion of pseudo-CT generation from MR images [47], and represents an 
example of generalizability and external validation which should be 
encouraged for applications generally. 

As there is no ground truth in pseudo image generation, QA should at 
least take place at the use case level. It should thus be directly clear that 
the image is a pseudo image. At a minimum, when pseudo images are 
utilised, there should be a formal reporting of the application/code 
including annotation of the version (or code deposition, if open source or 
development-level), notation of the characteristics of the input/ and 
output of the process (e.g., “pseudo-MR T2 fat suppressed images were 
generated from contrast CT simulation”), description of whether there 
was formal QA through reference of pseudo- images to a baseline image 
at the individual patient/case-level (for example, initial use of a simu-
lation CT, with subsequence pseudo-CT generation for adaptive dose 
calculation), and notation of whether reference images or pseudo- 
images alone were utilized for specific process (e.g., dose calculation 
or target delineation). 

Statement 3: When DL reconstruction algorithms are utilized, there 
should be a formal designation of the method (at the level of the vendor- 
supplied software version − a model fact sheet), annotation of the basic 
data, and supplementary data regarding resultant reconstruction pa-
rameters (recommendation). 

Volume segmentation 

The use of AI for volume segmentation is arguably the most devel-
oped application for radiation therapy. Several commercial products are 
now available, as well as open-source code developed in the research 
setting and numerous publications reporting on independent cohorts of 
patients as well as publicly available curated datasets. The architectures 
used to train AI segmentation models have been rapidly developing, 
benefiting from developments in AI in computer vision outside of the 
medical field and advances in graphical processor unit power. These 
combined areas have enabled the progression from 2D models, to 3D 
patch based models, to fully 3D models that automatically configure 
themselves (e.g. no new Unet), to techniques that learn from multi- 
modality images. 

One of the most significant challenges with the development and 
clinical deployment of AI for volume segmentation is its validation, 
specifically in determining precisely what the “gold standard” or ground 
truth segmentation is. Numerous studies have demonstrated the vari-
ability in contouring both normal tissues (higher level of agreement), 
gross tumour volumes (variable agreement), and clinical target volumes 
intended to encompass microscopic disease (large variability). Vari-
ability exists between and within observers as well as clinical practices. 
Consensus methods (e.g. Simultaneous truth and performance level 
estimation) and guidelines can improve the consistency of these con-
tours [22,73]. 

Once a suitable ground truth is established, several methods exist to 
validate the segmentation accuracy including qualitative acceptability 
by the clinical user, workflow efficiencies, geometric accuracy versus 
the ground truth, dosimetric impact when using the segmentations to 
develop treatment plans, and finally outcomes assessment, e.g. differ-
ences in the actions taken or determined outcomes based on the differ-
ences between the ground truth and the AI segmentation. Published 
studies vary widely in the mechanisms used to report accuracy in AI 
segmentation making comparisons between studies challenging 
[7,42,51]. Although the chosen metrics depend on the research question 
to be answered, it would be good if at least qualitative (e.g. Likert scale 
for usability) and quantitative (e.g. Hausdorff Distance and (surface)- 
Dice Similarity Coefficient, time gain) metrics would always be re-
ported. The inter- and intra-observer variability in contouring tumours 
and normal tissues in the clinical setting should also be considered when 
evaluating AI segmentations [5]. The field should encourage the 

development of these clinical benchmarks for comparison. 
At this stage in the clinical deployment of AI for volume segmenta-

tion, simple geometric validations, are insufficient to predict usefulness 
in a prospective clinical setting. For example, as these tools are mainly 
used for more efficient segmentation, a timing study should be per-
formed. The translation of geometric differences in tumour and normal 
tissue segmentation into clinical factors, e.g. meeting dosimetric criteria 
vary depending on their spatial location and their interaction with the 
treatment planning and delivery processes. For example, Chen et al. 
showed that dose distributions of target volumes were unaffected when 
auto-segmented organ contours were used in the design of treatment 
plans compared to manual delineations, whereas the impact of auto-
mated segmentation on the doses to OARs was complicated [12]. It is 
possible that the simple reliance of segmentation accuracy on geometric 
measures will both limit the clinical deployment of AI segmentation in 
areas where the current accuracy is sufficient and potentially encourage 
the clinical deployment of AI segmentation in areas where the accuracy 
is not sufficient (e.g. due to highly conformal treatments, small numbers 
or fraction, and aggressive treatment intent). It is recommended that 
research leaders and professional societies invest in the development 
and public dissemination of or blinded access to benchmark datasets to 
enable the systematic testing and validation of new algorithms on 
standardized data consistent across studies. Researchers must be as 
comprehensive as reasonably achievable in reporting the limitations 
that exist in their studies performed using either these benchmarking 
tools or non-public data that cannot be overcome at publication. 

Treatment planning 

The field of AI treatment planning is developing very fast. There have 
been some reviews in the past 3 years but it is likely new insights will 
continue to appear (e.g. [70]). Primarily, it is important to distinguish 
the various types of output from such models. Some models predict a 
Dose Volume Histogram (DVH), while others predict one 3D dose dis-
tribution or a pareto optimal range of dose distributions. Eriksson and 
Zhang presented a model for robust 3D dose prediction for proton beams 
[32]. There are also models which can predict fluence maps [94] or 
segment shapes [72] using 2D projections of the segmented organs in the 
beams-eye view directions. For all of these outputs, it is still necessary to 
translate the predicted output to a deliverable plan with all the required 
machine settings. This actual plan should fall into the same treatment 
plan class solution as the plans used as input into the AI model in order 
for the solution to be directly useful clinically. For example, an AI model 
trained on Intensity Modulated Radiotherapy (IMRT) plans will in 
general not be able to predict a dose distribution for a Volumetric 
Modulated Arc Technique (VMAT) technique with sufficient accuracy 
and passing QA measurements [56]. 

For all of the above methods, it is intrinsically assumed that the class 
solution is known; beam energy, number and direction of beams or arc 
start and stop angles need to be selected beforehand and are consistent 
between training, validation and clinical use. Automated non AI 
methods to determine optimal beam angles are available, for example 
the 4pi algorithm [24] while AI based orientation selection is in the early 
stage of development [79]. 

Also, it is intrinsically assumed that the training data represents the 
clinical scenario in which the model will be applied. It should be clear 
whether the treatment plans used for training were actually used in the 
clinic or not or if some plans were further improved or removed from the 
training set and based on which criteria. This should be combined with a 
clear description of the targets and OARs on which the plans were made, 
preferably with a reference to published delineation guidelines and 
standard nomenclature [66]. 

When evaluating the models, the metrics used should be based on the 
output within the treatment planning process for which the AI model is 
developed, but preferably also on the actual deliverable plan, i.e., taking 
possible post processing and final plan calculation into account, as these 
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can differ [85]. For example, some papers report on the predicted dose 
before translation to a deliverable plan and some on the dose after 
translation, i.e., an actual plan. A general review of plan quality metrics 
is given by Hernandez [39], who distinguish dose distribution, plan 
robustness and plan complexity metrics and give examples of such 
metrics. There is no consensus yet on generic robustness metrics. 
Moreover, actual clinical employment of a model may lead to plans 
perceived less quality than in a retrospective analysis [67]. This may 
depend on the input data (e.g. use of clinical data or data generated 
specifically for model development) or on the subjective qualitative 
scoring by the observers [52]. It may be helpful if an AI model could also 
quantify the uncertainty in the dose prediction. For example, if the 
prediction is used as a benchmark QA tool to compare with clinical 
plans. Monte Carlo bootstrapping and bootstrap aggregation are pro-
posed methods to incorporate this [71]. 

Statement 4: Plan quality metrics should encompass dose and also 
robustness and complexity metrics combined with acceptance criteria 
(highly recommended). 

Statement 5: Qualitative scoring before and also during clinical 
employment for the first patients should be performed (recommended). 

Patient specific QA of treatment delivery 

The number of publications on patient-specific QA (psQA) is growing 
significantly. Osman and Maalej published a comprehensive review of 
20 relevant papers that appeared until March 2021 [75]. They sum-
marized studies based on algorithm used, anatomical site, number of 
input plans or beams, number of input features, QA outcome prediction 
metric and key results. 

As input such models usually use a number of plan features and not 
the whole plan, and it was argued that aperture-based complexity 
metrics are more direct descriptors than fluence-based complexity 
metrics as they directly represent the delivery parameters utilized by the 
treatment machine. As such they may offer better insight into the 
disagreement between the calculated and measured doses. 

Gamma pass rates or machine error detection were used as outcome 
prediction in the publications. The gamma pass rates were in general 
based on 2D or 3D measurement of the complete plan or of each beam. 
The machine errors mainly consisted of Multileaf collimator (MLC) 
positioning errors and output variations, but some studies also included 
errors in MLC transmission, dosimetric leaf gap, effective source size and 
alignment of a measuring device [50]. Generally, studies tried to predict 
measurements without the patient on the table. To incorporate patient 
specific influences on QA measurements and predictions, Wolfs et al. for 
example used Electronic Portal Imaging Device (EPID) measurement of 
actual patient treatments as input to learn to detect and classify 
anatomical changes and tumour regression [91]. 

Patient specific QA results depended on machine and MLC type, 
measurement detector, and whether or not multi-institutional valida-
tions were performed. Pass rates also depend on the algorithm used to 
calculate the gamma values [46]. Many studies used EPID based input 
and recently other detectors have also been used [63,92]. Predicted 
gamma pass rates deviated on average less than 1 % (with 3 %=2 SD) for 
3 %/3mm thresholds. 

Regarding the usability of AI models for error detection, Wootton 
et al. could, for example, demonstrated higher accuracy compared to the 
conventional gamma analysis with a logistic regression model [92]. 
Many other models were compared and support vector machine models 
came out best in several studies, using metrics like area under the curve 
(AUC) and root mean square error. However, various metrics and also 
simulation and classifications of errors were used, making it very hard to 
draw clear conclusions over multiple studies. 

Moreover, it is not always directly clear if the metric would be 
clinically useful. For example, besides the prediction accuracy one 
would probably also want to know the specificity and sensitivity (AUC) 
of a model for certain clinical action levels, as an important concern is 

not to predict too many plans as passing while in reality these would not 
pass the actual measurement [44]. 

An interesting approach to psQA first described by Carlson et al. [10] 
used machine logfiles as training input to accurately predict the actual 
MLC positions for VMAT plans. Using these positions and recalculating 
the treatment plan they were able to better predict the actual achieved 
dose distribution and DVHs which led to higher gamma pass rates 
compared to measurements. Chuang et al., Osman et al. and Huang et al. 
expanded on this work [14,45,75]. 

Gong et al. developed an AI model to directly predict actual DVHs 
with AI input from phantoms without the need for logfiles [37]. Pre-
dicting DVHs is a promising approach which may be more clinically 
relevant than gamma pass rates which have been shown not to correlate 
well with DVHs. 

To our knowledge, AI psQA models have not been implemented 
clinically yet. This might be partly due to the unavailability of large, well 
curated multi-institutional training datasets to improve and generalise 
the predictions and the unavailability of commercial psQA outcome 
prediction solutions. It would also be useful to know the uncertainty of 
the prediction of a model. Yang et al are among the first to investigate 
this [93]. 

Statement 6: Before models can be safely implemented clinically, 
the models should be validated for the combination of treatment plan-
ning system, treatment technique, patient group and radiation and 
measurement equipment for which it will be applied (highly recom-
mended), preferably on large scale multi-institutional data (optional) 
and in the institution that will actually use it (highly recommended). 

Statement 7: Patient-specific QA model results should include 
clinically relevant metrics like sensitivity and specificity (Receiver 
operating characteristic analysis) (highly recommended). 

Adaptive treatment 

Most models predict a treatment plan based on the image set ac-
quired and one or more segmentations. However, there are also models 
that combine prediction of anatomical changes and related adapted 
treatment plans [15]. 

The adaptive RT setting may also allow the implementation of 
training strategies exploiting prior knowledge, for example images and 
segmentations from the original treatment planning. This idea is to 
adjust a model in a patient-specific fashion, and is well described in 
Eppenhof et al. [31]. Several publications have shown that in the case of 
segmentation, some benefits over a population model can be obtained 
[13,35,49,57]. In this case, care must be taken to balance tuning the 
model to the planning image and applicability to subsequent fraction 
images. Alternatively, segmentation deformation networks can also be 
used to propagate planning segmentations to fraction images [49]. 

The use of AI for both offline and online adaptive RT is the culmi-
nation of AI for volume segmentation, image analysis, planning, QA, and 
outcomes prediction. In an ideal setting, adaptive RT is driven by the 
analysis of the images and a resulting deviation in the predicted out-
comes − or the opportunity to improve the outcomes based on changes 
in the patient anatomical or functional state. Currently, most adaptive 
strategies are driven by either planned intervention time points or 
geometric changes in the patients. Data has demonstrated that these 
may result in adaptations that do not benefit the clinical outcomes for 
the patient and miss the opportunity to improve clinical outcomes for 
others. Leveraging these tools to optimize the use of resources, when 
beneficial, will benefit radiotherapy patients. We must work to simul-
taneously effectively optimize the risk–benefit of the use of AI tools for 
adaptive radiotherapy for an individual patient as well as assessing the 
risk–benefit of the tools on the patient population. Specifically, research 
results typically report the average, standard deviation, and inter-
quartile range of the accuracy of the adaptive tools. These results are 
highly useful to determine if clinical translation is warranted, however, 
when outliers in the data exist, we must evaluate how to determine the 
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patients that will have similar poor results once the tools are clinically 
translated. Patient specific QA methods play a critical role in preventing 
these outlier errors from impacting patient care. Outlier cases might 
benefit most from model adaptation, while the average model perfor-
mance might decrease from this model adaptation. The intensity of the 
clinical decision making is increased when moving from the offline 
adaptive setting, where hours of clinical time can be dedicated to QA, to 
the online adaptive setting, where QA and decisions must be made in 
minutes. 

Alternatively, as these tools progress together and the resources 
required to employ these tools significantly decreases, one can envision 
a new standard of care where every patients get an optimized treatment 
of the day based on daily images that have been accurately contoured, 
with an optimized best-in-class treatment plan with sufficient QA that 
has leveraged outcomes prediction to determine the optimal fraction-
ation that should be delivered to that days anatomical and functional 
presentation. This is a futuristic goal, however, early results demonstrate 
that this level of efficient, daily adaptation can be possible for all pa-
tients. Several innovative tools are already demonstrating great promise 
for clinical translation such as AI-based image augmentation to improve 
the image quality and contrast resolution of non-diagnostic images, 
which may improve the ability to perform online adaptive RT [60]. 

Outcome prediction 

With the growing importance of personalised radiotherapy, AI-based 
outcome prediction using the vast amount of patient-specific data have 
gained substantial attention. The Outcomes Working Group of the 
American Society of Clinical Oncology defines the outcomes of cancer 
treatment as a tool to be used for technical assessment and the devel-
opment of cancer treatment guidelines [1]. According to the Outcomes 
Working Group, two types of outcomes are defined; i.e., patient out-
comes (e.g., survival rate or quality of life) and cancer outcomes (e.g., 
toxicity, response, cost-effectiveness). When choosing a treatment plan, 
a single outcome could not be demonstrative of the overall patient 
outcome after treatment. Therefore, it is more relevant to consider three 
important outcomes, typically toxicity, response, and survival rate. 

Outcome models can be either predictive or prognostic and both 
were considered when referring to prediction models in this paper. 
Outcome models in radiation therapy can be categorised in analytical 
models and data-based models. Analytical models are mainly based on 
dosimetric variables (e.g., dose distribution, fractionation) and can be 
either mechanistic (e.g., the linear quadratic model for TCP), or 
phenomenological in nature (e.g., Lyman model for NTCP). However, 
treatment response is mediated by complex interactions among patient- 
specific anatomic, biological and treatment conditions not captured in 
analytical models. Data-based models do have the ability to include 
multimodality imaging, high throughput biotechnology providing omics 
information, and capture clinical data through electronic health records. 
These data elements can supplement conventional radiation dose-based 
treatment parameters and clinical information providing a pathway to 
more accurate outcome predictions for an individual patient. 

Minimum reporting requirements for reliable prediction models 
using AI [29,68] have been formulated. Five prediction model devel-
opment phases can be considered: (1) clinical problem definition; (2) 
data preparation; (3) prediction model development; (4) prediction 
model validation and testing; (5) prediction model interpretation, 
impact assessment and implementation into daily healthcare practice 
[3]. The most important aspects to be considered for each phase will be 
summarised here. 

Clinical problem definition 

Defining the clinical problem consists of specifying the patient- 
specific parameters and endpoints. Patient-specific parameters can be 
clinical data, treatment data, dosimetric data, imaging data, biological 

data. Endpoints include TCP-related endpoints as well as normal tissue 
response-related endpoints and overall survival. 

Data preparation (pre-processing, profiling and curation) 

The data preparation phase consists of selecting the patients to 
construct an unbiased dataset. Considerations in this are treatment 
regime, follow-up time, bias with respect to underrepresented groups. 
Inclusion and exclusion criteria need to be specified to understand how 
the cohort was assembled and which patients were excluded. 

Statistical profiling is used to detect inconsistent data, suspicious 
outliers and to recognize trends in the data set. Imputation methods can 
be used to correct for missing data. Data normalisation (standardisation) 
of highly variable data (e.g., Z-score) should be performed. Protocols 
should be in place that define the link between the curated data and the 
correct patient. The use of minimal common data elements such as the 
Operational Ontology for Oncology O3 [64] will improve the quality of 
real-world patient data. Review (auditing) of the outcome dataset 
should be performed by an interdisciplinary team with sufficient clinical 
knowledge. This could be a radiation oncology team within the hospital 
where the patient is treated or a trial organisation if the patients were 
treated within a clinical trial. 

Prediction Model Development 

The appropriate model architecture should be decided considering 
the input data types involved. A comprehensive model includes cate-
gorical data, imaging data and clinical data. The dataset should be split 
into training, tuning and test subsets using a cross-validation approach. 
Training on a balanced dataset is an important consideration as the 
power of the dataset is determined by the size of the minority class. To 
achieve data size balance, prior to training, oversampling methods are 
often used to increase the minority class, or selection methods are used 
to reduce the majority class. During the tuning process, hyperparameters 
and parameters used in the model can be optimised. 

Prediction model validation and testing 

Typically, validation and testing is performed with retrospective 
single-institute datasets. Prospective clinical deployment of AI-based 
outcome models will provide more direct evidence about model per-
formance and is needed to pave the way to trustworthy clinical imple-
mentation on real-world data. Preferably, a study analysis plan is 
registered prior to model development to increase transparency and 
reduce bias [83]. 

Prediction model impact assessment and implementation 

The purpose of predictive models is to support clinical decision- 
making and inform treatment planning. Examples of predictive models 
used ubiquitously in the oncology community, recommended and 
updated by internationally recognised regulatory agencies are the 
Tumour, Node, Metastasis (TNM) and the Union Internationale Contre le 
Cancer (UICC) models. The TNM is a survival predictor, which uses an 
ontology that is widely understood and is used both in clinical decision- 
making for individual patients, and in the definition of guidelines 
dictating behaviours considered beneficial for the patients. The ability of 
AI-based predictive models to use vastly more data and more variable 
data types than those encoded by the TNM system, while potentially 
making prediction more personalised entails greater complexity for 
regulatory agencies and scientific societies in defining how to formulate 
recommendations and update them over time. 

Statement 8: an auditing step of the patient outcome data by the 
interdisciplinary team responsible for the care of the patient is an 
important data quality safeguarding step. (highly recommended). 

Statement 9: the collection and interprofessional standardisation of 
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structured common minimal data sets for different indications is an 
important step towards the building of interpretable prediction models 
based on real-world patient data. (this cannot be directly influenced by 
individuals: optional). 

Training, validation and testing of AI parameters 

It is recognized that the development of AI algorithms needs to be 
performed rigorously in order to ensure reproducibility, reliability as 
well as generalizability to unseen data (i.e., learning the task)[6,26]. 
This process has been discussed in many textbooks on AI [87] including 
their application in the field of medical physics [27]. AI as data-driven 
approaches learn their (hyper-) parameters from the underlying data 
dependencies (e.g., input–output mapping in supervised learning or 
unlabelled data patterns in unsupervised learning). Specifically, in the 
case of supervised machine/deep learning, which constitutes the ma-
jority of AI applications in medical physics, radiology or radiation 
oncology (e.g., auto-contouring, dose predictions, treatment planning, 
online adaptive, etc.), the data is typically partitioned into three main 
nonoverlapping subsets with clear description of selection criteria and 
pre-processing procedures [84]: training subset of the AI algorithm, 
tuning (often called validation) subset for tweaking of the hyper- 
parameters as well as it acts as an internal validation process of the al-
gorithm, and an independent testing subset for external validation 
purposes to ensure generalizability of the algorithms beyond training 
[21]. Though there is no consensus on the sizes of these data splits, ratio 
splits like 60:20:20, 70:15:15, or 80:10:10 are common. The choice of 
the exact ratio split may be data and problem dependent. The different 
validation steps are highlighted in the original Transparent Reporting of 
a multivariable prediction model of Individual Prognosis Or Diagnosis 
(TRIPOD) guideline [19] and the ensuing proposed extensions to AI 
applications (TRIPOD-AI) and the risk of bias tool (PROBAST-AI), [17] 
as part of the Equator network guidelines on enhancing the quality and 
the transparency of health research reporting. Though these guidelines 
and other journal publication checklists [29,68] may address re-
quirements for the development of AI algorithms using large retro-
spective analyses, they don’t address the concerns regarding the 
prospective deployment of these algorithms in the clinic [67] nor the 
intricacies associated with human–computer interactions [28]. There-
fore, there is a need to ensure that an AI model is not only accurate in its 
performance, but also it is transparent, fair and bias-free through post 
hoc application of AI interpretability/explainability techniques [36,62]. 
Another approach that is being advocated by several medical societies is 
intelligence augmentation by incorporating human expertise in the 
development cycle of AI. This intelligence augmentation approach 
seems to improve performance with demonstrative examples in radi-
ology [76] and radiation oncology [61]. Thus, the notion of fully 
autonomous AI may remain a futuristic goal at least for the time being, 
particularly in areas that involve human decision making. 

Statement 10: Checklists to ensure reproducible AI development in 
the broader sense than radiation therapy should be used (highly 
recommended). 

Model availability for others to verify 

Using externally (commercially or from scientific research) devel-
oped models typically have the intrinsic uncertainty of the end-user not 
being able to know all the specific details in model architecture, soft-
ware implementation and the procedure followed for training, valida-
tion and testing of the AI model. This however does not mean that these 
models cannot be used in other settings but some care has to be taken in 
using these models outside of the reference conditions. Availability of 
the source code could give an insight in the AI architecture and imple-
mentation but is not always available. If source code is present, this 
might not always be sufficiently reproducible if specific (in-house) 
coding libraries are used, patches or version numbers not always being 

compatible or available. Architectural description of the model is the 
minimum requirement, preferably all details should be provided. 

The dataset used for training, validation and testing should follow 
the general guidelines provided in the section on “Training, validation 
and testing AI parameters” and are still applicable. At least a description 
of the datasets and key characteristics include pre- and post-processing 
should be available. Furthermore, applying the AI model in a population 
outside the models training population, or, more general, it’s intended 
use, should be discouraged. Model datasheets should be provided for 
every trained model. Example model datasheets are given for segmen-
tation and treatment planning in the appendices and an example of a 
careful implementation of an externally developed model can be found 
in [5]. Simple correction strategies applied in statistics such as calibra-
tion of the model are not always as straightforward for AI models as for 
more commonly used statistical methods (e.g. logistic or linear regres-
sion). Furthermore, tuning the model parameters using new datasets is 
the field that is receiving also more attention of “incremental learning”. 
Details for this are provided in the section on “Model QA/updates and 
upgrades”. 

Statement 11: Externally developed models can also be used in 
other institutes after careful implementation (highly recommended). 

Statement 12: The end user should verify the model is trained and 
validated on the intended population to be used (highly recommended). 

Model QA/updates and upgrades 

Most AI models are trained on data of a specific historical cohort. 
With the introduction of novel technology (e.g. new CT scanner, upda-
ted MR acquisition protocols) or new work procedures in clinical prac-
tice (e.g. changes in treatment dose prescription or delivery technique) it 
is important to have two procedures in place in clinical routine [86]. 

The first one is a periodic QA of the performance of the AI model, the 
model performance may drift over time due to the above mentioned 
changes in workflow, patient population or equipment. The frequency 
and thoroughness of such a QA model will depend on the specific use 
cases and clinical implementation. 

The second procedure to have in place is an update (typically 
referred to small model changes) or an upgrade (for more substantial 
changes) procedure. At some point the need to update or upgrade 
models to reflect the current state-of-the-art again may arise. Various 
possibilities are currently being investigated to do this most efficiently. 
The simplest but most crude way of deriving a new model is to train, 
validate and test a new model based solely on a newly acquired retro-
spective cohort that resembles the current way of working. Alterna-
tively, also the previous cohort could be included to make a larger robust 
dataset, however one has to determine if the previous dataset also falls 
within the scope of the new applications. Another currently investigated 
procedure is the cycle sometimes referred to as rapid learning healthcare 
[3]. In such a cycle periodically (or even on a case-by-case level) new 
data is added to the training cohort of the model. Since a (slightly) 
different model is trained every time, validation and test procedures of 
these models need preferably to be fully automated for such methods to 
work in clinical routine. 

Ethics 

Despite the promise and potential of AI/ML application in the 
medical domain in general and radiation oncology specifically, it has 
generated a myriad of new ethical and legal challenges that are 
tampering its progress. These challenges could be concerning the patient 
in terms of privacy protection, the healthcare provider in terms of legal 
responsibility when mistakes occur, the developers in terms of trans-
parency and mitigating the risks of bias or error, and subsequently al-
gorithms themselves in terms of trustworthiness and acceptance. 
Therefore, organizations such as the European Commission have pub-
lished related guidelines and white papers. These include the white 
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paper on AI trust and excellence, [2] which was followed by several 
regulations on data governance and AI harmonized rules through the 
Artificial Intelligence Act A of April 2021. In parallel, the United States 
has issued the National AI Initiative Act, which became a law in January 
of 2021. The Food and Drug Administration has also been occupied in 
regulating many AI products as they appear in the US market by clas-
sifying them as software as a medical device [34]. In addition, the Food 
and Drug Administration has issued several guidelines for good AI 
practice in collaboration with equivalent agencies in Canada (Health 
Canada) and in the United Kingdom (Medicines and Healthcare Products 
Regulatory Agency) [30]. Also the USA government has issued a guid-
ance on AI, which includes details on healthcare applications [82]. On 
December 9th of 2023, the European parliament reached a provisional 
agreement on the new EU AI Act [33]. Important to remark is that in this 
act it is stated that High-risk AI systems shall be designed and developed 
in such a way, including with appropriate human–machine interface 
tools, that they can be effectively overseen by natural persons during the 
period in which the AI system is in use. The current legislation does as 
such not change the responsibility structure in a hospital environment 
[25]. In response to the regulatory guidelines and to address the pressing 
concerns regarding transparency and reproducibility of AI results, [54] 
research journals have been also busy issuing their own guidelines for 
publication purposes such as the checklist for AI in medical imaging 
(CLAIM) by the Radiology journal sponsored by the Radiological Society 
of North America and the checklist for AI in medical physics (CLAMP) 
[29] by the journal Medical Physics sponsored by the AAPM. Though 
these guidelines and checklists may help address some of the immediate 
ethical and legal concerns associated with AI development, there remain 
many open questions regarding deployment and clinical implementa-
tions in the short and long terms. These open questions include but are 
not limited to how to effectively monitor AI performance in the clinic 
and at what frequency? How to address the known data drift issues in 
medical records and when to update AI training data accordingly? Also 
unknown, how AI deployment will impact the complex healthcare 
provider-patient relationship and what will be the future of this rela-
tionship in AI’s presence? As we learn more about AI role in the medical 
field and radiation oncology answers to these questions will likely be 
provided but more likely newer questions will be posed too. 

Statement 13: Though ethical standards may vary by society and 
regulatory bodies in the European Union and North America, these 
bodies are setting requirements for AI products that need to be consid-
ered. (Highly recommended). 

General Statements and discussion 

Topic specific guidance and Statements have been given in the pre-
vious sections. Hereunder some more generic guidance and Statements 
are given in the context of the use of AI for radiotherapy. 

Proper use of commercial AI tools for radiotherapy starts with setting 
the right requirements for the purchase of such tools. A good overview of 
developing, purchasing, implementing and monitoring AI tools in radi-
ology is given in [8] and many aspects obviously overlap with AI tools 
for radiotherapy. Before purchasing, one has to consider challenges of 
interoperability of the new tools with existing healthcare systems and 
the complexities of integrating AI into diverse clinical workflows. 

Introduction of AI tools in the clinic also holds challenges for the 
education of the employers. Concerns are for example raised that radi-
ation oncologists or therapists might loose the skills to delineate struc-
tures or generate a treatment plan [9]. Awareness that AI will have a 
large influence on clinical practice in the future and core curricula need 
to be adapted [48]. 

For AI algorithms in a medical context, the trustworthiness of AI 
models is of importance. “explainability” and “interpretability” might be 
ways to make such models more trustworthy and be of added value to 
make clinical decisions or to be confident enough to implement a model 
in clinical practice. Explainability of the model requires comprehensive 

insight into the underlying mechanism of the model which is for most DL 
models difficult to achieve. Interpretability only requires that clinicians 
can rationalise the prediction based on scientifically and clinically sound 
reasoning, e.g., by demonstrating that the prediction is consistent with 
clinical knowledge. Several methods exist to establish interpretability 
both for conventional ML as well as DL models [23]. Model explain-
ability loses importance when the outcome of a model is easily inter-
preted. There is no contradiction here. For example, when a DL model 
predicts a tumour or organ at risk segmentation, it is useful even if it is 
not explainable how it is predicted, as the segmentation can be seen 
superimposed over the images and will undergo deep scrutiny by a ra-
diation oncologist before acceptance. It is however still important to be 
aware of systematic bias and risks associated with extrapolation of 
model predictions outside of its initial data set. 

Statement 14: An overview of the input data, detailed model pre-
scription and model performance together with intended use and ex-
amples where the model does not perform well should be made available 
(see Appendix B and C for examples) (highly recommended). 

Statement 15: In order to achieve clinical applicability, close and 
effective collaboration among the academia, industrial partners, radia-
tion oncologist, medical physicists, radiation therapists, mathemati-
cians, computer scientists, and data scientists is required 
(recommended). 

Statement 16: Have procedures in place for periodic QA of your AI 
tool before clinical introduction (highly recommended). 

Statement 17: Have procedures in place for upgrades and updates 
before clinical introduction (highly recommended). 

Statement 18: Rigorous testing is key of AI development and serves 
as the gateway for its deployment (highly recommended). 

Statement 19: Trustworthy AI is key for safe and beneficial imple-
mentation in radiotherapy (recommended). 

The field of AI for use in radiotherapy is very rapidly evolving. 
Although this guideline gives a broad overview of the topic and presents 
recommendations that are sufficiently generic to be applicable for some 
time, an update of the guideline and the underlying literature within a 
few years seems warranted. 
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Disclaimer 
ESTRO cannot endorse all statements or opinions made on the 

guidelines. Regardless of the vast professional knowledge and scientific 
expertise in the field of radiation oncology that ESTRO possesses, the 
Society cannot inspect all information to determine the truthfulness, 
accuracy, reliability, completeness or relevancy thereof. Under no cir-
cumstances will ESTRO be held liable for any decision taken or acted 
upon as a result of reliance on the content of the guidelines. 

The component information of the guidelines is not intended or 
implied to be a substitute for professional medical advice or medical 
care. The advice of a medical professional should always be sought prior 
to commencing any form of medical treatment. To this end, all 
component information contained within the guidelines is done so for 
solely educational and scientific purposes. ESTRO and all of its staff, 
agents and members disclaim any and all warranties and representations 
with regards to the information contained on the guidelines. This in-
cludes any implied warranties and conditions that may be derived from 
the aforementioned guidelines. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.radonc.2024.110345. 
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