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ABSTRACT
Large language models (LLMs) have emerged as powerful tools in
artificial intelligence, demonstrating remarkable capabilities in natural
language processing and generation. In this article, we explore the
potential applications of LLMs in enhancing cardiovascular care and
research. We discuss how LLMs can be used to simplify complex
medical information, improve patient-physician communication, and
automate tasks such as summarising medical articles and extracting
key information. In addition, we highlight the role of LLMs in catego-
rising and analysing unstructured data, such as medical notes and test
results, which could revolutionise data handling and interpretation in
cardiovascular research. However, we also emphasise the limitations
and challenges associated with LLMs, including potential biases,
reasoning opacity, and the need for rigourous validation in medical
contexts. This review provides a practical guide for cardiovascular
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R�ESUM�E
Les modèles de langage à grande �echelle (LLM) sont devenus des
outils puissants en intelligence artificielle, d�emontrant des capacit�es
remarquables dans le traitement et la g�en�eration du langage naturel.
Dans cet article, nous explorons les applications potentielles des LLM
pour am�eliorer les soins et la recherche cardiovasculaires. Nous dis-
cutons de la manière dont les LLM peuvent être utilis�es pour simplifier
des informations m�edicales complexes, am�eliorer la communication
patient-m�edecin et automatiser des tâches telles que la synthèse
d’articles m�edicaux et l’extraction d’informations cl�es. De plus, nous
soulignons le rôle des LLM dans la cat�egorisation et l’analyse des
donn�ees non structur�ees, telles que les notes m�edicales et les
r�esultats des tests, ce qui pourrait r�evolutionner la gestion et l’in-
terpr�etation des donn�ees dans la recherche cardiovasculaire.
Cependant, nous soulignons �egalement les limites et les d�efis associ�es
79
80

81

82
Large language models (LLMs) are a form of generative arti-
ficial intelligence (AI) that mark a turning point in the field of
AI. Their size (ie, number of neurons or parameters) is very
large, which gives them unexpected emergent properties1 and
enables them to excel at different tasks beyond the original
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intention of the data set they were trained on.2 Emergent
properties in the context of LLMs refer to abilities or features
that were not explicitly programmed into the model, but
rather surfaced because of the model’s complexity and
extensive training. For example, these models can exhibit
some logical reasoning and can follow instructions. Whereas
traditional AI models would require specific programming to
understand and use common sense in their tasks, LLMs
exhibit this ability without explicit instruction, having learned
it implicitly from their inherent training data. These are
referred to as foundation models to emphasise their critically
central yet incomplete nature. For example, while a general
model such as ChatGPT,3 which stands for “Chat Generative
1 July 2024 � 11:47 pm � ce
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professionals to understand and harness the power of LLMs while
navigating their limitations. We conclude by discussing the future di-
rections and implications of LLMs in transforming cardiovascular care
and research.

aux LLM, notamment les biais potentiels, l’opacit�e de leur raisonne-
ment et la n�ecessit�e d’une validation rigoureuse dans les contextes
m�edicaux. Cette revue fournit un guide pratique aux professionnels
cardiovasculaires pour comprendre et exploiter la puissance des LLM
tout en naviguant dans leurs limites. Nous concluons en discutant des
orientations futures et des implications des LLM dans la trans-
formation des soins et de la recherche cardiovasculaires.

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

2 Canadian Journal of Cardiology
Volume - 2024
Pretrained Transformer,” might correctly answer questions
about certain diseases, it is not designed for medical use and
lacks the expert domain knowledge to suggest specific thera-
pies based on guidelines and requires additional training on
domain specific data sets. The “T” in GPT refers to “trans-
formers,”4 a type of deep learning architecture that uses
attention mechanisms to learn contextual relationships be-
tween words in a text. Transformers offer several advantages,
such as the ability to process input sequences in parallel,
capture long-range dependencies, and generalise across various
tasks and domains. These properties make transformers well
suited for natural language processing tasks and have
contributed to the success of LLMs such as GPT. Operating
on user-generated inquiries known as “prompts,” these models
generate relevant textual responses. LLMs have demonstrated
effectiveness across various domains outside of health care,
including customer service, commercial sales platforms, and
automated grammar and spelling checks, among others.5

However, the application of LLM in specialised fields such
as cardiovascular medicine is still in its infancy.6 Nevertheless,
there remains a lack of comprehensive understanding about
their mechanisms, generalisability, failure points, and full ca-
pabilities owing to their evolving nature.

In this review, we examine the development of LLMs and
their prospective applications in strengthening clinical prac-
tice, empowering patients, and advancing medical research.
We detail their capabilities and underscore the importance of
understanding their limitations. Notably, while some practi-
tioners have already started experimenting with LLMs,
optimal utilisation demands specialised prompting techniques.
This review further provides practical guidelines to harness the
full potential of LLMs. Our objective is to furnish medical
practitioners with critical insights to thoughtfully assimilate
LLM technology into their practice. We aim to enrich the
decision-making process for the prudent incorporation of
LLMs, thereby elevating patient care and optimising profes-
sional work flows.
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Development of LLMs
Developments in the field of LLMs will play a pivotal role

in integrating their applications within cardiovascular medi-
cine. However, to fully appreciate their potential, it is critical
to understand the evolutionary trajectory of AI advances
which has led to the conception of these models. Various
glossary terms are defined in Table 1.

Convolutional neural networks (CNNs) have revolu-
tionised computer vision and pattern recognition.7 However,
they possess inherent limitations that hinder their effectiveness
in language processing.8 CNNs are inherently biased toward
spatial hierarchies, meaning that they can discern the spatial
REV 5.6.0 DTD � CJCA5098_proof �
position of elements in an image. Yet, this characteristic
proves less beneficial in language processing, where the
context predominates over the positional relevance of words.
Consider the sentence, “Jane treated the patient with care.” A
CNN might focus on word pairs or small groups of words in
proximity, such as “Jane treated” or “treated the,” but struggle
to capture the overall context. It may not accurately differ-
entiate whether “with care”modifies “treated” (indicating Jane
treated the patient carefully) or if it forms part of a phrase like
“patient with care” (ie, the patient is distinguished by “care”).
To address this, previous AI-enabled text analysis models
include recurrent neural networks (RNNs)9 and long short-
term memory (LSTM) units.10 A key limitation of these
early architectures, known as the “vanishing gradient” prob-
lem, is that the ability to maintain and access information
from the beginning of the data sequence reduces over time.
This can lead to suboptimal performance in tasks requiring
long-term dependencies, such as when a comprehensive un-
derstanding of a patient’s entire medical history is necessary
for accurate diagnosis and treatment planning. For example,
imagine a cardiologist recalling the details of a lengthy patient
history. Initially, older details (analogous to past hidden states
in LSTM/RNN) remain clear, but as more and more infor-
mation is added, early details may begin to “fade” and thus
these models cannot take earlier details into considerations.

LLMs are based on a neural network architectural frame-
work known as transformers.4 Unlike previous architectures,
transformers process sentences in their entirety rather than
sequentially. The cornerstone of this capability is the so-called
attention mechanism,4 which empowers the model to assess
the relevance of different words, or pieces of a word known as
a token, in a sentence or paragraph, regardless of their posi-
tional relationship. This unique property aids in understand-
ing intricate language structures, nuances, and contexts, which
are prerequisites for producing coherent text. As a result,
LLMs can be efficiently trained on massive data sets with
trillions of words to predict the next word based on the pre-
vious words. Transformers employ attention mechanisms to
determine the significance of each word within the full context
of the sentence (Fig. 1). When processing the same sentence, a
transformer discerns that “with care” characterises the way
“Jane treated the patient.” It acknowledges the broader con-
textdJane’s meticulous treatment of the patientdinstead of
merely focusing on adjacent word pairs. The first transformer
used an encoder-decoder mechanism and excels at tasks of text
translation.4 GPT11,12 and BERT (Bidirectional Encoder
Representations From Transformers13) are 2 present-day
prominent transformer-based models (Fig. 1), but they
differ in their architecture, training, and use cases. GPT is an
autoregressive language model that uses a unidirectional
decoder, it looks back at previous words to predict the next
1 July 2024 � 11:47 pm � ce



Table 1. Glossary

AI model A computational algorithm designed to perform tasks that require human-like
intelligence.

Autoregressive decoding Refers to generating output sequences one token at a time, conditioning each token
on the previously generated tokens.

Encoder-only models Models, such as BERT, encoding the text into a more abstract representation to
focus on understanding the input text and producing task-specific outputs, such as
text classification (eg, is this a report of a normal or abnormal transthoracic
echocardiogram?)

Decoder-only models Models, such as GPT, decoding the input text in order to generate the next word.
Fine-tuning A process in machine learning where a pretrained model, such as an LLM, is further

trained on a specific data set to specialise its knowledge and improve its
performance on related tasks. This method adapts the model to cater to domain-
specific requirements, such as medical diagnostics or legal analysis.

Generative AI Artificial intelligence that can generate new content or data patterns based on
learning from a large set of examples.

Large language model (LLM) An advanced AI model trained on extensive text data to understand and generate
human-like language across a broad range of topics and tasks.

Long-tail knowledge This refers to information that appears rarely or only once in LLMs trained on
internet text. This is particularly important in specific domains such as cardiology.

Domain knowledge Specialised understanding and information pertinent to a particular field or subject
area.

Generative Pretrained Transformer (GPT) A type of AI language model that uses a unidirectional transformer architecture to
generate human-like text. GPT is trained on large data sets to predict the next
word in a sequence based on the previous words, enabling it to generate coherent
and contextually relevant text when given a prompt or initial segment of a
sentence.

Bidirectional Encoder Representations From Transformers (BERT) A type of AI language model that uses a bidirectional transformer architecture to
understand and interpret natural language. BERT is trained on large data sets with
the use of a masked language modelling objective, allowing it to learn from both
the left and the right contexts of a word. This bidirectional understanding enables
BERT to excel at various natural language understanding tasks, such as text
classification.

Natural language input User-provided information or commands given in everyday human language that an
AI system can understand.

Prompt A user-generated input that triggers an AI to generate a specific response or perform a
task.

Prompt engineering The process of strategically crafting prompts to elicit more accurate or relevant
responses from an AI system.

Token In natural language processing, a token typically refers to a meaningful unit of text,
such as a word or a group of words. It is the main input variable in a machine
learning model.

Output The information or response produced by an AI system or model in reaction to a
prompt.

Reinforcement learning A type of machine learning where an AI model learns to make decisions by receiving
rewards or penalties for actions.

Reinforcement learning from human feedback A method where AI models are trained to improve based on feedback or corrections
provided by humans.

Retrieval-augmented generation A type of model that integrates the capabilities of pretrained language models with
efficient neural retrieval systems. It combines the strengths of both extractive and
abstractive methods, enabling it to access a vast external knowledge base beyond
its initial training data when generating responses or content. It is particularly
useful for generating detailed fact-based answers and can significantly improve
performance on knowledge-intensive tasks.

Structured information Data that are organised in a predefined manner, typically in databases or
spreadsheets, making them easy to search and manipulate.

Unstructured information Data that are not organised in a predefined way, often found in texts, images, or
other formats that do not follow a strict structure.

Transformers A type of neural network architecture that uses self-attention mechanisms to process
sequential data, such as language, more effectively than previous models.

Context window This refers to the amount of input data that an AI system or model considers while
responding to a prompt. In the context of language models, it is the number of
previous tokens, ie, words or sentences, taken into account while predicting the
next token or generating text.

Convolutional neural network A type of deep neural network commonly used in analysing visual imagery,
characterised by its use of convolutional layers that automatically and adaptively
learn spatial hierarchies of features from input images.

Recurrent neural network A type of neural network designed to recognise patterns in sequences of data, such as
text, genomes, handwriting, or the spoken word. It is characterised by the looping
mechanism of its hidden layers, which provides a form of memory.

REV 5.6.0 DTD � CJCA5098_proof � 1 July 2024 � 11:47 pm � ce
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Long short-term memory A type of recurrent neural network well suited to learning from important
experiences that have very long time lags. It is known for its effectiveness in
sequence prediction problems owing to its cell state, which can maintain
information in memory for long periods.

Training The process of facilitating an AI model to improve its performance through exposure
to a large data set. During the training phase, the model learns to extract features
and patterns from the data, enabling it to make predictions or decisions without
being explicitly programmed to do so.

Knowledge date cutoff This refers to the last point at which information was added to a model’s training
data. Any knowledge or events occurring after this point will not be reflected in
the model’s responses, because it has not been trained with that data. This cutoff
date is crucial for understanding the model’s “current”’ knowledge and its
limitations in terms of time-sensitive or recently updated information.

AI, artificial intelligence.
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word in a sequence. It is decoder only, meaning the text data
is directly input to the model without any encoding, meaning
without transformation into a more abstract representation.
To generate output that matches the user prompt, GPT needs
to be trained on large prelearned embeddings, usually
involving trillions of words. This allows the model to generate
coherent and contextually relevant text based on the input
prompt. Users can steer the model’s output by carefully
crafting the input prompt.

BERT is an autoencoding language model that uses a
bidirectional encoder, allowing it to learn from both the left
and the right contexts of a word by processing a more abstract
representation of the whole sentence. BERT is primarily used
for natural language understanding tasks such as text classifi-
cation and question answering. It is trained on a masked
language modelling objective, where some of the input tokens
are randomly masked, and the model learns to predict the
original tokens based on the surrounding context. BERT can
utilise transfer learning to continue learning from existing data
when adding user-specific tasks and layers, adapting to new
domains or applications without the need for training from
scratch. Two examples are presented in Table 2 to demon-
strate different use cases for GPT and BERT. GPT excels at
generating human-like text based on a given prompt, and
BERT is well suited for understanding and extracting infor-
mation from existing text to answer questions or perform
other natural-language understanding tasks, essentially acting
as a discriminator (or “classifier”).9
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Present-Day LLMs
Google published their research on the first model based

on the transformer architecture4 in 2017. Shortly after,
OpenAI unveiled its inaugural LLM, the GPT, using this
novel transformer architecture.4,11 Subsequent iterations,
developed through extensive training on a vast corpus of text
data, resulted in the release of GPT-3.5 in March 2022. This
iteration went through additional refinement using a method
called reinforcement learning with human feedback (RLHF),
culminating with the release of ChatGPT in November
2022.3 This version garnered global attention for its ease of
use and remarkable human-like outputs and interaction ca-
pabilities. GPT-3.5 learned from a wide range of written
sources, such as books, articles, websites, and other open text,
using trillions of words. It spans various kinds of topics and
REV 5.6.0 DTD � CJCA5098_proof �
domains, from fiction and science to current events, providing
a thorough understanding of human language and knowledge.
GPT-3.5 was designed to anticipate the “next word” in a
sequence, functioning similarly to a “complete this sentence”
task. However, what truly marks a game-changing evolution
in GPT-3.5 is its ability to replicate human-like text outputs.
This is masterfully realized through RLHF. Trained human
evaluators assess LLM outputs, rating their accuracy. These
ratings align the model’s responses to human expectations,
refining its narrative and contextual accuracy. Each rating then
functions as a “beacon,” guiding the fine-tuning of the model.
The model learns, evolves, and refines its language-generation
abilities based on the feedback, with high ratings reinforcing
correct outcomes, and low ratings steering it away from
incorrect ones. This alignment is key to RLHF’s role in
enhancing chatbot experiences, ensuring that the model
maintains conversation context and provides apt responses
resulting in a more engaging user interaction with the LLM.

However, it is important to note that technical bias has
been observed during deep learning model optimisation,
based on word choices, omissions, and other factors. This
phenomenon has been referred to as “stochastic parrots” in a
paper by Bender et al., where the authors argue that “strong
human alignment” achieved through RLHF can introduce
similar human biases into LLMs.14 As the model is fine-tuned
based on the preferences and judgements of AI trainers, it may
inherit their biases, potentially leading to skewed or discrim-
inatory outputs. Moreover, the reliance on human feedback in
RLHF can result in the overuse of certain words or phrases
that are deemed more favourable by the trainers. For example,
the word “delve” has been observed to be overused in AI-
generated text,15 serving as a strong indicator that the con-
tent was created by an LLM and seeing an exponential growth
in abstracts of medical papers after the release of GPT-4. This
overuse of specific terms can make the generated text appear
less natural and more formulaic, potentially undermining the
goal of achieving truly human-like outputs.

In the following years, several models using the same type
of data, training, and alignment approaches, such as Google’s
(Mountain View, CA) Gemini16 or Anthropic’s (San Fran-
cisco, CA) Claude,17 were released. These models are “closed”
LLMs accessible through websites or smartphone apps.17-19

The user cannot enhance them with new data, and their
design, training data sets, and development methods are often
undisclosed or partially disclosed. These models are not
1 July 2024 � 11:47 pm � ce
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transparent, which makes it hard to trust their outputs in
fields such as medicine where clarity is important. They can
also take multimodal inputs, meaning different types of in-
puts, such as images, and produce text based on them, such as
giving answers about an image.

In parallel, over the past year, there has been a rise of
“open-source” LLMs, such as Llama 3 (Meta, Menlo Park,
CA)20 and Mixtral (Mistral AI, Paris, France),19,21 which
allow users to download and use them on offline. Further-
more, these open-source models, with their accessible model
weights,22 can be fine-tuned using medical data, enhancing
their accuracy for health professionals. These features are
especially important in cardiovascular medicine, where patient
privacy and domain-specific knowledge are crucial in
providing accurate information. Recent advances in publicly
available free open-source software, such as LM Studio23 and
GPT4ALL,24 have made it easier for users to run open-source
LLMs locally, even on smartphones.25 This is made possible
by innovations that allow their models to be compressed,26

mitigating the need for specialised hardware and the
internet. However, this process is akin to compression
decreasing an image’s quality; it may slightly compromise the
model’s predictive accuracy and result in lower-quality text
generation. With the steady pace of improvements noted over
the past 2 years, it is conceivable to foresee privacy-focused
models operating on ordinary smartphones in the upcoming
year.26 Other advances in LLMs include the expansion of the
context window, which pertains to the length of the prompt
that can be used as input and subsequently analysed by the
LLM to generate the textual output. Contemporary models
permit a context size of up to 200,000 tokens,17 implying that
an entire book spanning 400 pages can be used as input to
augment both its knowledge base and the quality of its
outputs.

In contexts like medicine, where accuracy and detail are
paramount, it is essential to have robust tools for assessing
LLMs’ capabilities. This ensures that the chosen model can
handle the complexity and nuances of medical language,
reliably interpret patient data, and provide precise informa-
tion, which is critical for informed decision making and pa-
tient care. Choosing the right LLM for your specific task
requires a thorough evaluation of the model’s performance
across different tasks. Traditionally, this evaluation uses
standardised data sets, but this method has limitations when
assessing current LLMs. A more effective approach might
involve the use of “strong LLMs”dmodels that excel in lan-
guage comprehension and perform well across a range of
evaluation tasksdas evaluators, particularly for open-ended
questions.27 Strong LLMs can be used as judges because
they can offer automated evaluations of chat assistants, which
is quicker and cheaper than human evaluation. These models
are trained with RLHF and show strong human alignment,
meaning they are good at judging human preferences.27 To
validate the effectiveness of LLMs, 2 new benchmarks,27 MT-
Bench and Chatbot Arena, were introduced. These platforms
use crowdsourcing to rank LLMs, providing a scalable and
interpretable way to reflect human preferences. Users of these
platforms are presented with 2 responses to a prompt and
must vote for their preferred answer. On Chatbot Arena,28

GPT-418 currently holds the top rank, whereas Mixtral21

leads among open LLMs and performs better than GPT-3.5
REV 5.6.0 DTD � CJCA5098_proof �
(ChatGPT). This approach demonstrates that LLMs, partic-
ularly GPT-4,18 closely align with human preferences,
achieving over 80% agreement, on a par with the level of
agreement typically seen between humans.27 For medical
applications, 2 data sets have been suggested for evaluating
LLMs: MultiMedQA, which consists of 6 open question-
answering data sets that cover different domains of medical
knowledge, such as professional examinations, research, and
consumer questions, and HealthSearchQA, which is a data set
of question and answers that reflect frequent online searches
related to medical topics.22 However, general foundation
models, such as GPT-4, currently have an edge over task-
specific models, as they show their better flexibility across
various domains, indicating the intrinsic drawbacks of using a
smaller open-source model instead of a large foundation
model for a task-specific model.29 However, this could soon
change with improvement of fine-tuning methods of open-
source models, such as Mixtral,21 surpassing closed-source
models such as GPT-4.30
Prompting Techniques
LLMs fundamentally lack the concept of success; their

primary function is to predict the next word based on the text
data sets they have been trained on and the instructions given
by the user. Recognising this limitation is essential to using
these models effectively. Perhaps the most important part of
this review, and in the use of generative models such as LLMs
in general, is the exploration of prompting techniques that can
significantly improve a model’s output. This is a process
known as “prompt engineering” (Table 3) and is a key
method for guiding LLMs to produce more useful and rele-
vant responses.

First, to ensure optimal performance of LLMs, one must
consider using prompts that guide it toward successful out-
comes. For example, you can use prompts such as “Imagine
yourself to be an expert in x” or “Assume you have an IQ of
160” to improve the accuracy of the generated text.31 Second,
LLMs perform best when given clear and detailed prompts
with context-specific examples. Recent models even allow the
uploading of images or textual files along with the prompt to
help the model better understand the context and objectives of
the tasks at hand. Third, loading relevant context into its
memory can save time and enhance performance. By saving
and reloading prompts each time when running the LLM to
perform a particular task, users can streamline workflows and
observe improvements in its performance. Fourth, “chain-of-
thought prompting”32 is perhaps the most effective technique
to increase the accuracy of the LLM. This method entails
structuring prompts in such a way that they guide the AI
through a logical sequence of steps, or “thoughts,” to reach an
answer or solution. Simply prompt it, for example, to “think
through this step by step” and outline the series of logical steps
the model should follow to accomplish the desired task.
Table 3 presents examples of both nonoptimal and optimal
prompting techniques (using chain-of-thought prompting),
based on the tips presented in this paragraph, and their cor-
responding outputs. Using these methods resulted in a sub-
stantial enhancement of GPT-3.5’s output accuracy,
increasing from 17.7% to 78.0% on a standardised question
and answer data set.32 Similar prompt-engineering techniques
1 July 2024 � 11:47 pm � ce
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Figure 1. Architectures and language modelling techniques of language model networks. This figure illustrates 3 types of neural network archi-
tectures commonly used in language modelling: encoder-only, encoder-decoder, and decoder-only. Each architecture is suited for different types of
language tasks such as understanding (encoder-only), translation (encoder-decoder), or generation (decoder-only). (A) Encoder-only: Input text is
processed through multiple layers that account for both the individual word meanings (input embeddings and positional encoding) and the context
within the sentence or phrase (multihead attention and add & norm). The output embeddings represent the transformer’s understanding of the
input, typically used for tasks such as sentence classification and entity recognition. (B) Decoder-only: This model starts by embedding and pro-
cessing the input text, but is optimised for generating text outputs by predicting the next word in a sequence. Layers such as RMS norm and
grouped multi-query attention aid the model in producing coherent and contextually relevant text. This is commonly used in text-completion tasks.
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were studied and applied to GPT-4 and they achieved a
remarkable score � 90% on the US Medical Licensing Ex-
amination while also reducing error rates by 27% on the
MedQA data set when applied to 305 curated questions of
376 total USMLE questions.29 These improvements are
attributed solely to the refinement of the prompts without
changes to the model or the training data.29 However, it is
important to note that this data set is imperfect and that a
substantial portion of GPT’s incorrect responses were cat-
egorised as a “reasonable response by GPT” by physicians.33

This sheds light on the challenge of discerning explanations
that may lead to incorrect options, even among trained
medical professionals, and highlights the need for further
refinement and validation of the data set used to evaluate the
performance of LLMs in medical contexts.
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Applications of LLMs in Clinical Care
In clinical practice, LLMs can help by analysing patient

data and medical literature to identify potential diagnoses,
suggest appropriate tests, and recommend optimal diagnostic
or treatment strategies (Fig. 2). For example, a recent article
by Eriksen et al.34 presented research where the AI model
GPT-4 was evaluated for its ability to diagnose complicated
medical conditions. The study demonstrates that GPT-4
correctly diagnosed 57% of the clinical cases presented, out-
performing 99.8% of medical journal readers who participated
in the complex case challenges published online, each with a
poll of 6 diagnostic options.

LLMs were applied to various medical fields, including
cardiology, to guide clinicians in prescribing appropriate tests.
As an example, ChatGPT has been shown to be able to
recommend imaging tests in specific patients presenting with
abdominal pain.35 The recommendations were consistent
with previously established guidelines, with no significant
differences in referral appropriateness based on age or sex.
Particularly in cases recommending chest, abdominal, and
pelvis CT scans, the LLM’s suggestions aligned closely with
specialist opinions.35 In radiology, similar work was done to
improve appropriateness of breast cancer screening.36 In
personalised oncology,37 LLMs were assessed for their ability
to recommend treatment options based on genetic alterations
in cancer patients. While their accuracy was slightly lower
than human experts, they provided some helpful treatment
options and unique suggestions that were not provided by
experts. A significant limitation of LLMs is their inferior
performance compared with human experts in certain highly
specialised fields, such as oncology,37 particularly owing to
their reliance on freely accessible internet data, lacking
(C) Encoder-decoder: Combining 2 processes, the encoder processes the inp
processed input to generate a corresponding output, often in a different lang
(D) Diagrams showing distinctions between the pretraining process of BERT
encoder-only model masks tokens and learns to reconstruct those tokens
incomplete sentences and predicts the next word in an autoregressive fash
token). The model pays more attention to the words that contribute significa
red colour in the diagrams; the white-coloured boxes indicate words that have
only, decoder-only, and encoder-decoder models, are sequence-to-sequence
BERT-style methods as encoder-only, the description encoder-only may be m
output tokens or text during pretraining. In other words, both encoder-only and
architectures, in contrast to decoder-only and encoder-decoder architecture

REV 5.6.0 DTD � CJCA5098_proof �
adequate scientific context and lacking specialised medical
knowledge, because medical literature was not used for
training. This lack of expert domain knowledge results in AI-
generated options often making statements without sufficient
supporting evidence. Although these models show potential as
clinical support tools, their application in specific fields such
as cardiology remains uncharted, requiring further research on
legal, ethical, and regulatory aspects. This also highlights an
opportunity for enhancing open-source models through fine-
tuning with specialised text data, potentially improving their
accuracy and reliability in medical contexts.

Another application of LLMs is in answering questions and
enhancing our fundamental medical competencies by
providing factual knowledge. LLMs, having processed a vast
collection of publicly available internet data during training,
can competently address queries from medical licensing ex-
aminers. For example, GPT-4 achieves impressive average
scores of 87%38 to 90%29 on the US Medical Licensing Ex-
amination, and even surpassed human doctors in responding
to questions related to soft skills, such as interpersonal
communication and empathy, in the examination context.39

Similar results were observed for the European Exam in
Core Cardiology40 and other standardised cardiology ques-
tions.41 These capabilities suggest that LLMs could eventually
contribute to medical education, by summarising key evidence
and answering medical questions, thereby enhancing learning
and comprehension. However, overreliance on them can
unintentionally lead to a lack of effort to develop robust
mastered knowledge, ie, to relying on LLMs rather than
cultivating one’s own in-depth understanding. Therefore, it is
important to find a balance between using the advantages of
LLMs to enhance learning and keeping the required level of
human expertise in medical fields. This is especially relevant
because text data based on human knowledge and experience
is what made these models effective in the first place.

Finally, LLMs currently assist in medical note taking,42

saving time and providing helpful suggestions at the point
of care. In the US and Canada, the largest electronic medical
record system, Epic (Madison, WI), integrated GPT-443 to
assist health care providers with patient communications,
creating chart summaries, and drafting nursing notes.44
Applications of LLMs in Patient Interactions
LLM integration in the form of AI-powered chatbots5,45

demonstrates significant advances in the capabilities of AI to
enhance patient interactions (Fig. 2). Commercial voice-based
AI systems have shown promise in identifying medical in-
formation in cardiology clinics,46,47 but generally those
ut text similarly to the encoder-only model, and the decoder uses this
uage for translation tasks, or a continuation of text for summarisation.
(encoder-only architecture) and GPT (decoder-only architecture). The
using the context bidirectionally. The decoder-only architecture uses
ion (ie, the sentence is fed back to the model to complete the next
ntly to predicting the next word, as represented by the intensity of the
less influence on the prediction. Note: All of these methods, encoder-

models (often abbreviated as seq2seq). Note that although we refer to
isleading, because these methods also decode the embeddings into
decoder-only architectures are “decoding.” However, the encoder-only

s, are not decoding in an autoregressive fashion.
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Table 2. Differences between GPT and BERT

GPT11 (decoder-only) BERT13 (encoder-only)

Example prompt: “The cardiologist carefully reviewed the patient’s medical
history and found”

Example question: “What did the cardiologist discover when reviewing the patient’s
medical history?”

BERT’s task: Find the answer to the question in the given text.
Given text: “The cardiologist carefully reviewed the patient’s medical history and
found a previously undiagnosed congenital heart defect that required immediate
intervention. The patient, a 35-year-old man, had reported experiencing
shortness of breath and chest pain during physical activity. On examining the
patient’s echocardiogram and cardiac CT scan, the cardiologist discovered a
significant atrial septal defect that had gone unnoticed in previous check-ups.”

GPT output: “The cardiologist carefully reviewed the patient’s medical
history and found a previously undiagnosed congenital heart defect that
required immediate intervention. The patient, a 35-year-old man, had
reported experiencing shortness of breath and chest pain during physical
activity. On examining the patient’s echocardiogram and cardiac CT
scan, the cardiologist discovered a significant atrial septal defect that had
gone unnoticed in previous check-ups. The cardiologist promptly
scheduled the patient for a minimally invasive procedure to close the
defect and prevent further complications. Thanks to the cardiologist’s
thorough review of the patient’s medical history and keen eye for detail,
the patient received a timely diagnosis and appropriate treatment,
greatly improving his long-term cardiovascular health and quality of
life.”

BERT’s answer: “The cardiologist discovered a previously undiagnosed congenital
heart defect, specifically a significant atrial septal defect, when reviewing the
patient’s medical history.”

Explanation: In this example, GPT generates a coherent and contextually
relevant continuation of the given prompt by predicting the next word
based on the previous words and its prelearned embeddings. The model
creates a plausible scenario where the cardiologist discovers an
undiagnosed heart defect and takes appropriate action.

Explanation: In this example, BERT uses its bidirectional understanding of the text
to locate the relevant information and extract the answer to the given question.
By considering the context on both sides of each word, BERT can accurately
pinpoint that the cardiologist discovered an undiagnosed congenital heart
defect, namely an atrial septal defect, during the review of the patient’s medical
history.

BERT, Bidirectional Encoder Representations From Transformers; GPT, Generative Pretrained Transformer.
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models do not incorporate LLMs. The ability of AI models to
provide empathetic and high-quality responses to patient
queries, as evidenced by recent studies, points toward a
transformative role in patient engagement and communica-
tion.48 In a recent study that assessed ChatGPT performance
compared with physicians in answering online health forum
questions, evaluators preferred ChatGPT’s responses over
physicians’ in 78.6% of cases, underscoring these AI models’
capability to provide empathetic and high-quality responses to
patient inquiries.48 In a study involving 195 questions,
ChatGPT’s responses were rated as “good” or “very good” in
78.5% of evaluations, significantly higher than the 22.1% for
physicians.48 This suggests an innovative approach to patient
education and support. However, it is important to note that
the questions posed on the forum covered a wide range of
health and lifestyle topics, many of which may not fall within
a physician’s standard knowledge base or be answerable on an
evidence basis. ChatGPT’s willingness to engage in dialogue
and generate responses using its pretrained knowledge might
contribute to a more empathetic appearance, even if the ac-
curacy of the information provided is not always guaranteed.
The accuracy of LLM responses can vary and is heavily
influenced by the quality of the prompt, necessitating careful
oversight and verification, especially in cases where the input
prompt is ambiguous or the query does not have a straight-
forward answer (see “Prompting Techniques” above).45

This shows the possibility for LLMs to have a role in
educating and supporting patients. With the ability to give
brief and clear answers to medical questions, LLMs could help
in better understanding of medical conditions, assist in
decision-making processes, and enhance patient communica-
tion. Concerns of privacy, accessibility, and ease of use,
REV 5.6.0 DTD � CJCA5098_proof �
however, that have been identified in the context of other AI
systems46 need to be evaluated in LLM-based products.
Although our understanding of LLMs is nascent, it is likely to
mature over the coming years, so cautious optimism, coupled
with robust evaluation and research, is the course forward in
this innovative intersection of AI and cardiovascular medicine.

LLMs are also applied to enhance the understanding of
patient consent forms.49 With the use of a prompt such as,
“While preserving content and meaning, convert this consent
form to the average American reading level,” LLMs were able
to simplify the informed consent form.49 This has been evi-
denced by successfully reducing the complexity level of sur-
gical informed consent forms by 5 grade levels and decreasing
the required reading time by 26%, thereby making the forms
more understandable for the average American reader.49 By
using the capabilities of LLMs to simplify complex medical
language and adapt to the average reading level, health care
providers can improve patient comprehension, engagement,
and informed decision making. Such work could be expanded
to the field of cardiology to not only simplify consent forms,
but also to translate scientific publications into a format
approachable by patients.
Applications of LLMs in Research
Through their text simplification capabilities,50 LLMs are

adept at summarising medical articles and extracting key in-
formation to provide concise summaries of clinical findings
(Fig. 2). LLMs can also convert a text document into another
format, such as a table for a scientific article or a slide for a
presentation. This method involves organising unstructured
data, such as a medical image report, and may represent one of
1 July 2024 � 11:47 pm � ce



Table 3. Example comparing an optimised and nonoptimised prompt

Prompt Output

Nonoptimised prompt: What is the
optimal duration of antiplatelet
therapies in acute coronary
syndrome?

GPT-4: The optimal duration of anti-platelet therapy in acute coronary syndrome (ACS) is not one-size-fits-all; it
varies depending on individual patient factors and the type of ACS. Generally, guidelines recommend dual
antiplatelet therapy (DAPT) for 12 months after ACS, especially after percutaneous coronary intervention (PCI).
However, the duration can be adjusted based on the patient’s bleeding risk and other clinical considerations.

For example, in patients with a high risk of bleeding, a shorter duration of DAPT, such as 6 months, may be
considered. Conversely, in those with a low bleeding risk but high risk of ischemic events, extended DAPT beyond
12 months may be beneficial.

It is important to individualise treatment duration based on the patient’s overall risk profile and to continuously
re-evaluate the need for antiplatelet therapy throughout the course of treatment. Regular consultation with a
cardiologist is essential in managing these patients.

Optimised prompt: As a leading
Canadian cardiologist, I seek your
guidance on the optimal duration of
antiplatelet therapy in acute
coronary syndrome (ACS). Please
provide advice grounded in factual
evidence and supported by current
guidelines. It is crucial to have
accurate and reliable information.
Let’s approach this systematically.
Present the current evidence: Begin
by outlining the latest findings and
recommendations regarding
antiplatelet therapy in ACS in
Canada and around the world. Use
Canadian Cardiovascular Society
guidelines. Analyse the evidence:
Critically examine and interpret the
significance of this evidence,
considering how it applies to various
clinical scenarios. Summarise the
evidence in a table: Conclude by
presenting this information in a
clear, concise table format for easy
comprehension and reference.

Absolutely, let’s explore the optimal duration of anti-platelet therapy [.]
1. Present the current evidence.

A. Canadian Cardiovascular Society (CCS) guidelines:
� Duration: The CCS generally aligns with international guidelines, recommending 12 months

of dual antiplatelet therapy (DAPT) following ACS [.]
� Considerations for high bleeding risk: For patients at higher risk of bleeding, the CCS [.]
B. American College of Cardiology/American Heart Association (ACC/AHA) and European Society

of Cardiology (ESC) guidelines:
� Standard duration: Both recommend 12 months of DAPT following ACS with PCI.
� Tailoring therapy: Emphasise individualising therapy duration [.]

2. Analyse the evidence.
� Risk stratification: All guidelines underscore the importance of balancing ischemic [.]
� Clinical trials and research: Studies such as the DAPT and PEGASUS-TIMI 54 trials [.]
� Personalisation in therapy: A trend toward personalised medicine is evident [.]

3. Summarise the evidence in a table.
Criterion CCS guidelines ACC/AHA & ESC guidelines Key points
Standard duration 12 mo 12 mo After ACS with PCI
High bleeding risk Shorter duration possible Tailored based on risk < 12 mo for safety
Extended therapy 30 mo in selected cases Individualised, potentially

extended
For patients with low

bleeding risk and high
ischemia risk

Individualised approach Central to decision making Important for risk assessment Based on patient-specific
factors

4. Conclusion.
In managing ACS patients, the decision on the duration of anti-platelet therapy should be personalised [.].
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the most useful applications of LLMs. In medicine, a lot of
the care data is written as “free text” by doctors, in the form
of medical notes or test results. These data usually follow a
general structure, but it is not simple to sort it into clear
categories for research purposes and analysis at the population
level. Using a fine-tuned decoder-only architecture such as
BERT is usually superior to using encoder-only models such
as GPT, with chain-of-thought prompting for the task of task
classification.

LLMs have been studied for their ability to categorise ab-
stracts in cardiology studies,51 demonstrating a remarkable
98% accuracy rate in assigning these abstracts to various
categories of studies automatically without any a priori
training for the task. This study highlights the potential of
LLMs in research, particularly in automating bibliometric
analyses, which could be a transformative tool in data
handling and interpretation of medical research. This meth-
odology can be extended to analyse medical reports for
extracting pertinent information for further analyses or for
improving data collection. For example, in a study focusing on
the use of an innovative AI algorithm to estimate left ven-
tricular ejection fraction from coronary angiograms,52 it was
important to categorise performance based on the presence or
absence of acute coronary syndrome. In this context, BERT
was used to automatically extract the indication for the pro-
cedure from more than 10,000 angiogram reports. Remark-
ably, this process was completed in less than an hour and
REV 5.6.0 DTD � CJCA5098_proof �
necessitated human oversight for only 100 samples, validating
the effectiveness and efficiency of this approach.

LLMs are particularly adept at computer programming and
data science tasks, which can be invaluable in digital health
fields, for medical data analysis and visual representation.53

For example, GPT-418 integrated a Python interpreter, a
virtual environment where the most popular programming
language can execute commands, to autonomously process
and interpret research data. The LLM can create program-
ming syntax for analyses and report its results with texts, ta-
bles, or visual plots, using the data files you upload and the
statistical tests you choose.

In addition, LLMs offer capabilities for condensing com-
plex scientific material, such as generating manuscript ab-
stracts automatically (Table 3). However, adherence to the
specific guidelines of each journal regarding the use of LLMs
is advised before using them for such purposes.54 Although
the inclusion of such tools can potentially improve the quality
of work and democratise the production and accessibility of
scientific materials, recent debates shed light on the conten-
tious role of LLMs in scientific writing. For example,
ChatGPT has already been credited as a co-author in aca-
demic manuscripts, prompting reactions from the academic
community. Consequently, journals have begun instituting
editorial policies to address the acceptability of AI-written
content and provide clarity on complicated authorship is-
sues.55,56 Furthermore, room for improvement exists in
1 July 2024 � 11:47 pm � ce
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Figure 2. Applications of large language models in medicine.
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automatically citing the work used to support the text
generated by LLMs, because even the best models lack com-
plete citation support 50% of the time and partial citations
usually have erroneous elements such as invalid PubMed
IDs.57 Nevertheless, this is a rapidly evolving area, and our
perspective on it may continue to change as we gain more
understanding and establish comprehensive guidelines.
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Limitations
In cardiology, despite the growing excitement surrounding

their application, the emergence of LLMs in clinical practice
has highlighted significant limitations that must be carefully
considered (Table 4).2,58

Technical considerations

It is crucial to stress that LLMs are trained to predict the
next token; therefore they have only a limited understanding
of the world,2 although larger models have demonstrated
emergent reasoning properties.58 Their ability to rapidly
integrate and process vast amounts of data can be likened to a
savvy student who has access to an extensive database during
an examination but lacks extensive experience in the field.
Another concern in the medical field, including cardiology, is
potential biases of LLMs. LLMs can inherit biases present in
their training data, leading to potential disparities in perfor-
mance across different populations59 or languages,60 or to
domain-specific knowledge gaps. For example, models trained
on predominantly English data may perform less accurately on
French text, and models trained on internet data may have
gaps in medical knowledge. To address these issues, it is
crucial to ensure diverse representation in the training data
REV 5.6.0 DTD � CJCA5098_proof �
and evaluate model performance across different populations.
The topic of biases in generative AI is discussed in more detail
in another article within this issue of the Canadian Journal of
Cardiology. QThere is also an observable tendency for LLMs to
omit or gloss over crucial details necessary for making
informed clinical judgements. These models effectively
encapsulate a vast array of information, excelling remarkably
in responding to queries that revolve around well documented
knowledge frequently appearing in their initial training data.
However, they encounter difficulties in assimilating and
maintaining knowledge that is seldom found or is a less
common detail of critical relevance, which is called long-tail
knowledge.61 This drawback could potentially be counter-
acted with strategies such as model scaling, which may involve
augmenting the number of parameters or neurons, and
retrieval-augmentation generation, which extends a model
capacity beyond its initial training data. Retrieval-
augmentation generation is extremely capable at injecting
knowledge into an LLM, and this approach significantly im-
proves the performance of the LLM to generate text or answer
questions on knowledge-intensive tasks.62 Other strategies to
expand a model’s knowledge beyond its initial training
encompass additional fine-tuning, which involves re-training
the model with the use of new data. The Phi-1 model dem-
onstrates that knowledgeable LLMs can be trained on smaller,
curated sets of data (ie, textbooks) and excel at performance
over larger models trained on less curated data.63 Prompt-
engineering also can be used to embed specific knowledge
within the prompt itself, thereby enhancing the resultant
outputs (Table 3).

An additional limitation is the lack of transparency sur-
rounding the training data and methods used by proprietary
1 July 2024 � 11:47 pm � ce
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LLMs such as ChatGPT. This lack of transparency is con-
cerning, especially when considering the standards of
evidence-based medicine, which emphasises the clear docu-
mentation and selection of sources. For cardiovascular care
providers, understanding which medical guidelines have been
integrated into the LLM’s training is essential before it can be
deployed for clinical use. Furthermore, it is important to look
at the knowledge date cutoff (Table 1) for LLMs, because they
may not be up to date in the fast-evolving world of cardio-
vascular medicine. For example, the last version of GPT-4 is
trained with data only up to April 2023.64 Without extensive
documentation and disclosed sources, evaluating their reli-
ability accurately can be challenging. This issue could
potentially lead to misinformation being disseminated or
exacerbate existing health disparities if incorrect information is
provided in a clinical setting.65 Despite these drawbacks, more
thorough research is warranted to adequately expound on
these methodologies within the medical context.

Human interface limitations

Critical concerns in the medical field, including cardiology,
include the potential biases and risks associated with over-
reliance on LLMs. One of the main issues with LLMs is the
opacity of its reasoning process. For example, when presented
with contradictory information, an LLM may concede an
error without explaining the rationale behind its initial
response, leading to uncertainty about the recurrence of
similar mistakes. GPT’s responses can sometimes be inaccu-
rate or misleading (“hallucinations”), particularly when
prompts are ambiguous or lack a single correct answer. The
system’s output requires verification and validation, especially
in medical contexts where errors can have serious implications.
Furthermore, considerations such as adversarial attacks and
concealed data poisoning must be considered.66 In theory,
malicious actors could poison the training data, causing the
LLM to provide incorrect answers to specific queriesda sce-
nario warranting serious concern, particularly if LLMs are
used for clinical decision making. The inadvertent leakage of
confidential or personally identifiable information67 from the
training data is another significant concern when utilizing
LLMs in patient or public-facing applications. Research has
shown that LLM safety is still extremely difficult to attain, and
that training data can be extracted from nearly all LLMs, even
those that have been instructed not to output the training
data, given the proper prompting technique.68,69 Finally, the
use of LLMs raises privacy concerns because some models
retain user data for retraining, which leads to questions about
data security and ownership. Although using locally hosted
models can mitigate this issue, they currently offer inferior
performance compared with closed-source models.61-63,66-69

Regulatory issues

Currently, no generative AI tools, such as LLMs, have
received endorsement or approval from regulatory bodies such
as the US Food and Drug Administration70 or Health Can-
ada71 for clinical applications. This is primarily due to con-
cerns about their accuracy and potential risks. LLMs pose
unique challenges for regulatory oversight owing to their
adaptability, scalability, and potential for misuse.72 Regulators
have suggested that oversight should focus on concrete high-
REV 5.6.0 DTD � CJCA5098_proof �
risk applications rather than the pretrained model itself, and
should include obligations regarding transparency, risk man-
agement, nondiscrimination provisions, and content moder-
ation rules. Furthermore, existing auditing procedures fail to
address the governance challenges posed by LLMs, necessi-
tating the development of new auditing procedures that cap-
ture the risks posed by these models. A tailored approach to
regulatory oversight is needed, which must be adaptive, ho-
listic, and cognisant of the diverse challenges and potential
consequences of LLMs in health care settings.72,73
Outlook
LLMs have revolutionised very quickly the way we interact

with AI and computers in general, facilitating natural in-
teractions between humans and machines for tasks such as
summarising, reformulation, coding, creative writing, and
data analysis. In the upcoming year, there will be a deeper
integration of LLMs into personal applications and operating
systems. Companies such as Apple (Cupertino, CA) and
Microsoft (Redmond, WA) have already begun74 or are
planning26 to integrate LLMs for these tasks. This integration
will change how humans and devices interact, from using
interface elements to voice or text commands, letting users
talk naturally and have the computer perform the correct
commands to complete the required tasks. A related LLM
integration is happening in electronic medical records, trying
to improve medical documentation, prescriptions, differential
diagnosis, patient communication, and treatment
recommendations.43

In parallel, we will witness a surge in highly capable open-
source models for task-specific applications in sectors such as
health care, with these models approximating or surpassing
the performance of proprietary models. Open-source models
offer accessibility to their core code and weights, allowing for
customisation and adaptation to new data sets. Moreover,
these models can be run locally, preserving user privacy. In
contrast, LLMs such as ChatGPT require significant server
infrastructure and internet connectivity for interaction.
Smaller open-source models, such as Mistral19,21 or Llama
3,20 may exhibit a minor performance reduction compared
with their closed-source counterparts, but they offer the
advantage of local operation on standard computers, signifi-
cantly enhancing patient privacy by processing data in-house.
Synthetic training data generation, an approach used by
platforms such as Constitutional AI and Orca Q, has gained
intense interest in the AI research community. These LLMs
have the capability to develop their training content, pre-
dominantly in systematic fields such as programming and
mathematics that are governed by consistent rules and syntax.
This ability can result in remarkable performance enhance-
ments and superior problem-solving capabilities. As they get
exposed to more scenarios and solutions, they can decipher
common routes and patterns, enhancing their proficiency in
addressing complex issues.75,76
Conclusion Q

LLMs like GPT-4 have begun to establish themselves in
the dynamic landscape of medicine, offering significant po-
tential to revolutionise patient care, interaction, education,
1 July 2024 � 11:47 pm � ce
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Table 4. Limitations and strengths of large language models in cardiovascular medicine

Strengths Limitations

� Ability to process vast amounts of data
� Extensive memory capacity for retaining and recalling information
� Rapid generation of insights and summaries
� Adaptability to various tasks and formats
� Potential to streamline workflows and save time
� Scalability to support large-scale research and care delivery
� Continuous learning and improvement through updates
� Facilitation of personalised medicine approaches
� Enhancement of clinical decision support systems

� Potential biases in training data
� Lack of transparency in reasoning
� Risk of generating inaccurate or misleading information
� Limited understanding of context and nuance
� Dependence on the quality and relevance of training data
� Difficulty in handling novel or rare scenarios (underrepresented in the training

data set)
� Need for rigourous validation in clinical settings
� Ethical concerns regarding data privacy and security
� Potential overreliance on AI-generated recommendations

AI, artificial intelligence.
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and medical research. Their ability to assimilate vast amounts
of information and generate contextually relevant responses
represents a new frontier in health care. However, their
integration into clinical practice, biomedical research, and
patient support tools necessitates a cautious approach owing
to limitations such as knowledge cutoffs and the need for
vigilant oversight to mitigate potential inaccuracies and ma-
licious threats. The role of LLMs in medicine will likely
expand, driven by ongoing advances, increased accessibility,
and evolving applications that could have profound impact on
the efficiency and delivery of health care services. The future
of LLMs in medicine hinges on striking a balance between
exploiting their strengths and addressing their limitations,
ensuring that they serve as reliable and effective tools for
health professionals and patients alike, without causing harm
or compromising privacy.
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