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Clinical Pharmacogenetics Implementation 
Consortium Guideline for CYP2B6 Genotype 
and Methadone Therapy
Katherine M. Robinson1 , Seenae Eum2 , Zeruesenay Desta3 , Rachel F. Tyndale4 ,  
Andrea Gaedigk5,6 , Richard C. Crist7 , Cyrine E. Haidar8 , Alan L. Myers9 , Caroline F. Samer10 , 
Andrew A. Somogyi11 , Pablo Zubiaur12 , Otito F. Iwuchukwu13 , Michelle Whirl-Carrillo14 ,  
Teri E. Klein14 , Kelly E. Caudle8 , Roseann S. Donnelly8,15  and Evan D. Kharasch16,*

Methadone is a mu (μ) opioid receptor agonist used clinically in adults and children to manage opioid use disorder, 
neonatal abstinence syndrome, and acute and chronic pain. It is typically marketed as a racemic mixture of R- and 
S-enantiomers. R-methadone has 30-to 50-fold higher analgesic potency than S-methadone, and S-methadone 
has a greater adverse effect (prolongation) on the cardiac QTc interval. Methadone undergoes stereoselective 
metabolism. CYP2B6 is the primary enzyme responsible for catalyzing the metabolism of both enantiomers to the 
inactive metabolites, S- and R-2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (S- and R-EDDP). Genetic variation 
in the CYP2B6 gene has been investigated in the context of implications for methadone pharmacokinetics, dose, 
and clinical outcomes. Most CYP2B6 variants result in diminished or loss of CYP2B6 enzyme activity, which can 
lead to higher plasma methadone concentrations (affecting S- more than R-methadone). However, the data do not 
consistently indicate that CYP2B6-based metabolic variability has a clinically significant effect on methadone dose, 
efficacy, or QTc prolongation. Expert analysis of the published literature does not support a change from standard 
methadone prescribing based on CYP2B6 genotype (updates at www.​cpicp​gx.​org).

Methadone is a synthetic mu (μ) opioid receptor agonist indicated 
for the treatment of opioid use disorder, opioid withdrawal, and 
pain. Methadone has a long elimination half-life of ~1–3 days 
and undergoes extensive and stereospecific biotransformation to 
a primary and inactive metabolite, 2‐ethylidene‐1,5‐dimethyl‐3,3‐
diphenylpyrrolidine (EDDP), catalyzed predominantly by cy-
tochrome P450 2B6 (CYP2B6). The CYP2B6 gene is highly 
polymorphic, with variants resulting in differing enzymatic 
activity, which can influence methadone metabolism and clear-
ance. The purpose of this guideline is to provide clinicians with 
information that facilitates the interpretation of clinical CYP2B6 
genotyping test results and describe the evidence exploring the 
impact of CYP2B6 genetic variation on methadone pharmaco-
kinetics, dose, and clinical outcomes. Detailed guidelines for the 
use of methadone are beyond the scope of this document. Clinical 

Pharmacogenetics Implementation Consortium (CPIC) guide-
lines are periodically updated at www.​cpicp​gx.​org/​guide​lines/​​.

FOCUSED LITERATURE REVIEW
A systematic literature review was undertaken to evaluate a possi-
ble link between CYP2B6 genotypes and methadone metabolism, 
exposure, clinical effects, and adverse effects (see Supplement, 
Literature Review). The evidence is summarized in Table S1.

GENE: CYP2B6
Background
The CYP2B6 gene is highly polymorphic, with 49 star (*) al-
lele haplotypes defined to date by the Pharmacogene Variation 
(PharmVar) Consortium (https://​www.​pharm​var.​org/​gene/​
CYP2B6; see CYP2B6 Allele Definition Table online1–3). 
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The frequencies of these star (*) alleles differ across ancestrally 
diverse populations (see CYP2B6 Allele Frequency Table 
online1,2). Alleles are categorized into functional groups as fol-
lows: normal function (e.g., CYP2B6*1), decreased function 
(e.g., CYP2B6*6 and *9), no function (e.g., CYP2B6*18), and 
increased function (e.g., CYP2B6*4). For some alleles, the func-
tion is uncertain (e.g., CYP2B6*3). Clinical allele function, as 
described in the CYP2B6 Allele Functionality Table, was de-
termined based on reported in vitro and/or in vivo data when 
available.1,2 CYP2B6*6 (c.516G>T, p.Q172H, splice defect, 
rs3745274 and c.785A>G, p.K262R, rs2279343) is the most 
frequent decreased function allele (15%–60% minor allele fre-
quency depending on ancestry) and is the most extensively stud-
ied allele. Reduced protein expression due to aberrant splicing 
caused by the c.516G>T single-nucleotide variant (SNV) con-
tributes to the reduced function of CYP2B6*6 and other haplo-
types containing this SNV.4 Thus, several studies genotype this 
SNV as a marker for reduced CYP2B6 activity. More broadly, 
however, in vitro and some in vivo studies suggest complex 
substrate-dependent catalytic effects for some CYP2B6 variants 
(reviewed in5). Therefore, it is somewhat challenging to assign a 
uniform function to some CYP2B6 alleles, as function may be 
substrate-specific.

Genetic test interpretation
The combination of inherited alleles determines a person’s diplo-
type (also referred to as genotype). Table 1 defines each predicted 
phenotype based on allele function combinations and provides 
example diplotypes. The phenotype categories for CYP2B6 in-
clude ultrarapid metabolizer (UM), rapid metabolizer (RM), nor-
mal metabolizer (NM), intermediate metabolizer (IM), and poor 
metabolizer (PM). The clinical significance of the CYP2B6 UM 
and RM categories remains to be established; these categories were 
created with the publication of the CPIC guideline for CYP2B6/

efavirenz to allow for the possibility of their utility for other 
CYP2B6 substrates.6 See the CYP2B6 Diplotype-Phenotype 
Table online for a complete list of possible diplotypes and pheno-
type assignments.1,2

The assignment of CYP2B6 genotypes can be complex. Many 
clinical laboratories report CYP2B6 genotype results using star (*) 
allele nomenclature. The star (*) allele nomenclature for CYP2B6 
is found on the PharmVar website (https://​www.​pharm​var.​org/​
gene/​CYP2B6). Some laboratories test and report only on specific 
SNVs that have been most extensively studied, such as c.516G>T 
(rs3745274, p.Q172H/splice defect) and c.983T>C (rs28399499, 
p.I328T). These variants alone are the single-defining SNVs for 
CYP2B6*9 and *18, respectively. Of note, c.516G>T is found in 
combination with other variants in 16 other CYP2B6 alleles (*6, 
*7, *13, *19, *20, *26, *29, *34, *36, *37, *38, *39, *40, *41, *42, 
*43). In cases where only c.516G>T is tested, it is not possible to 
distinguish between the various (*) alleles which contain this SNV 
alone or together with other variants. However, because c.516G>T 
not only causes an amino acid change but also aberrant splicing 
which decreases protein expression; it is considered a canonical de-
creased function allele and thus all alleles that carry c.516G>T are 
considered to be decreased or no-function alleles, depending on 
the presence of other variants. Of note, the CYP2B6*6 allele con-
sists of c.516G>T (*9) and c.785A>G (*4). However, at least 14 
other alleles consist of c.516G>T (*9), c.785A>G (*4), and at least 
one additional variant (e.g., CYP2B6*7). If c.516G>T is detected, 
CYP2B6*6 should only be assigned if the presence of c.785A>G is 
confirmed and the presence of the other variants found in the other 
alleles (e.g., c.1459C>T in the case of CYP2B6*7) are excluded (see 
Figure S1). Similarly, if c.785A>G is detected, CYP2B6*6 should 
only be assigned if the presence of c.516G>T is confirmed and the 
presence of other variants is excluded. Furthermore, the defining 
core variant of the CYP2B6*18 allele, c.983T>C, is also consid-
ered a canonical no-function allele. Tables on the CPIC website 

Table 1  Assignment of predicted CYP2B6 phenotype based on genotype

Predicted phenotype Genotypes Examples of CYP2B6 diplotypesa

CYP2B6 ultrarapid metabolizer (UM) An individual carrying two increased function 
alleles

*4/*4

CYP2B6 rapid metabolizer (RM) An individual carrying one normal function allele 
and one increased function allele

*1/*4

CYP2B6 normal metabolizer (NM) An individual carrying two normal function alleles *1/*1, *1/*2, *2/*2

CYP2B6 intermediate metabolizer (IM) An individual carrying one normal function 
allele and one decreased function allele OR 

one normal function allele and one no-function 
allele OR one increased function allele and one 

decreased function allele OR one increased 
function allele and one no-function alleleb

*1/*6, *1/*18

CYP2B6 poor metabolizer (PM) An individual carrying two decreased function 
alleles OR two no-function alleles OR one 

decreased function allele and one no-function 
allele

*6/*6, *18/*18, *6/*18

CYP2B6 indeterminate An individual carrying one or two uncertain 
function alleles

*1/*3, *3/*3

aPlease refer to the CYP2B6 Diplotype-Phenotype Table online for a complete list. For allele function and population-specific allele and phenotype frequencies, 
please refer to the CYP2B6 Allele Functionality Table and the CYP2B6 Allele Frequency Table online.1,2 bThere is a paucity of clinical data for diplotypes 
containing one increased function allele and one decreased/no-function allele, and the data varies based on substrate. For methadone, there is limited data that 
suggest that*4/*6 may have increased activity compared with CYP2B6 normal metabolizers.43
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contain a list of CYP2B6 alleles, the combinations of variants that 
define each allele, CPIC clinical allele function, and reported allele 
frequencies across major ancestral populations.1,2

The limitations of genetic testing as described here include: (i) 
alleles not tested for (which may be known or unknown) will not 
be reported by the genetic testing laboratory, and instead, the allele 
will be reported as *1 by default; (ii) if only the c.516G>T variant 
is genotyped, it will not be known if it exists alone or in combi-
nation with other variants, and the allele should be reported as *9 
by default but, nevertheless, is sometimes reported as *6; (iii) sim-
ilarly, due to limitations in the testing technology, the diplotype 
may be ambiguous for patients heterozygous for c.516G>T and 
c.785A>G (though the predicted phenotype would be IM in both 
cases); (iv) genotyping tests are not designed to detect unknown 
or de novo variants; and (v) CYP2B6 structural variation including 
hybrid genes (rearranged gene structures formed from two separate 
genes) and duplications have been described, but little is known of 
their frequencies and clinical relevance.

Available genetic test options
See the Genetic Testing Registry (www.​ncbi.​nlm.​nih.​gov/​gtr/​) 
for more information on commercially available clinical testing 
options.

Incidental findings
No inherited diseases or conditions have been consistently or 
strongly linked to germline genetic variants in CYP2B6 indepen-
dent of drug metabolism and response. CYP2B6 genotype is clin-
ically relevant for efavirenz dosing.6

Other considerations
CYP2B6 is inducible (e.g., by phenobarbital, rifampin, and 
chronic methadone itself), which can alter the relationship be-
tween CYP2B6 genotype and phenotype.7,8

DRUG: METHADONE
Background
Methadone was first synthesized in the 1930s and approved by 
the US Food and Drug Administration (FDA) in 1947 for anal-
gesic and antitussive use.9 Subsequently, in the mid-1960s, it was 
shown to be effective in treating opiate addiction and approved 
for this use by the FDA in 1972. Methadone is currently used for 
the treatment of opioid use disorder, opioid withdrawal, neona-
tal abstinence syndrome, and acute and chronic pain. Methadone 
can be administered orally (approximately 85% bioavailable), rec-
tally, and parenterally (intravenous, intramuscular, subcutaneous, 
intranasal). Methadone dosing varies based on indication, with 
lower doses typically used for the treatment of pain and higher 
doses typically used for the treatment of opioid use disorder.

Methadone pharmacology is complex due to chirality. In the 
United States, methadone is used as a racemic mixture of R- and 
S-methadone, although in other countries (e.g., Germany) R-
methadone (levomethadone) alone is also used. Methadone is 
a μ opioid receptor agonist and effects are enantioselective. R-
methadone exerts the majority of the opioid effects of the racemate 
because it has 30- to 50-fold higher binding affinity and analgesic 

potency than S-methadone.10,11 R-methadone is also predomi-
nantly responsible for other μ opioid effects, including respiratory 
depression.10,12 S-methadone alone is in clinical trials for the treat-
ment of depression.11

While most other clinically relevant opioids are essentially pure 
μ agonists, methadone has several non-opioid targets. For example, 
methadone blocks N-methyl-D-aspartate (NMDA) receptors in 
laboratory studies.13 However, clinical methadone concentrations 
(often < 1 μM) are lower than the IC50 or Ki of methadone for the 
NMDA receptor (3–10 μM).13 Thus, the clinical occurrence or 
significance of this non-opioid receptor effect remains unknown. 
Methadone also interacts with norepinephrine and serotonin re-
uptake transporters at concentrations which more closely resem-
ble those achieved clinically.14 R-methadone appears more potent 
than S-methadone at these non-opioid receptors.14 Whether this 
influences methadone-induced analgesia is unknown.

In contrast to analgesia, some studies indicate that S-methadone 
is more potent than R-methadone at blocking the cardiac hERG 
channel, particularly at high (therapeutic or supratherapeutic) con-
centrations tested in vitro.15,16 hERG channel inhibition by meth-
adone in vitro is concentration-dependent.15,16 There is concern 
that this blockade may lead to prolongation of the electrocardio-
gram QTc interval and in severe cases, torsade de pointes ventric-
ular arrhythmia or sudden cardiac death.15–18 The definition of 
“long” QT interval is > 450 ms in males and > 460 ms in females,19 
but generally more relevant is a drug effect which increases QTc 
by ≥ 60 ms or QTc > 500 ms.20 Clinically significant QTc prolon-
gation (> 500 ms) and torsade de pointes have occurred, typically 
at high methadone doses (e.g., median 345 mg/day) and longer 
use,15,17,21–23 but torsade de pointes has occurred at daily doses as 
low as 30–40 mg.17,23 However, the relationship between dose and 
clinical QTc interval is weak (correlation coefficient, r, of ~0.2–
0.315,23–25), the magnitude of methadone effect on QTc is small 
(i.e., ~10 ms per 100 mg dose26,27 and 15–30 ms per 1,000 ng/mL 
S-methadone15,24,25), and the QTc rarely exceeds 500 msec.24,25,28 
Multiple factors alone or in conjunction with methadone can af-
fect QTc (e.g., genetic long-QTc interval, history of arrhythmia or 
prolonged QTc, electrolyte abnormalities, and concomitant med-
ications).18 Clinical practice guidelines for methadone and elec-
trocardiogram (ECG) monitoring are variable. Some recommend 
universal ECG prescreening29,30 and others recommend screening 
only in patients with significant risk factors18,31 and/or in patients 
receiving greater than 100–120 mg daily,18,30,31 and are beyond the 
scope of this guideline.

Methadone disposition has been studied for decades, and yet 
has been habitually misunderstood if not misrepresented, and 
only recently has a greater clarity been achieved regarding the 
data and mechanistic determinants of methadone metabolism 
and pharmacokinetics.32,33 Early reports suggested that the elim-
ination half-life was variable (8–59 hours in adults); however, 
more recent studies clarify the long elimination half-life (~2–3 
and ~ 1–2 days for R- and S-methadone, respectively).34,35 The 
major route of systemic clearance is hepatic N-demethylation 
to the inactive metabolite 2-ethyl-1,5-dimethyl-3,3-dipheny
lpyrrolidine (EDDP). Methadone was initially identified as 
metabolized in vitro mainly by human liver microsomal and 
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cDNA-expressed CYP3A4, and human in vivo clearance was 
initially attributed predominantly to CYP3A4 based on extrap-
olated in vitro data.32,33 Subsequent investigations showed that 
CYP2B6 also efficiently metabolizes methadone in vitro and  
in vivo, and it is now unequivocally established that human in 
vivo methadone metabolism and clearance are mediated pre-
dominantly by CYP2B6 and minimally by CYP3A4.32,33,36 
Recent pharmacokinetic modeling estimated the fraction me-
tabolized via CYP2B6 at 74% and that via CYP3A4 as <5%.37 
CYP2B6 metabolizes S-methadone about 50% faster than R-
methadone.38 Methadone clearance appears to undergo autoin-
duction,7,39 attributed to upregulation of hepatic CYP2B6.8

Linking genetic variability to variability in drug-related 
phenotypes
There is limited literature exploring the impact of CYP2B6 ge-
netic variation on clinical outcomes during methadone treatment, 
including dose requirements, efficacy, and adverse events. Most 
studies instead focus on CYP2B6 genotype effects on the phar-
macokinetics of methadone. The clinical implications of changes 
in methadone disposition are less understood due to the titratabil-
ity of methadone dose and the weak pharmacokinetic–pharma-
codynamic relationship between methadone concentrations and 
QTc prolongation. More studies have evaluated oral administra-
tion rather than intravenous methadone, steady-state rather than 
single-dose, total rather than unbound concentrations, and pa-
tients (with potential confounders) rather than healthy subjects, 
and have focused predominantly on the impact of CYP2B6*6 
(and c.516G>T alone) and on pharmacokinetic data.

CYP2B6 variants and methadone plasma concentrations. 
The strongest data demonstrate higher plasma S-methadone 
concentrations in those with CYP2B6 decreased and no-function 
alleles (Table S1). Steady-state trough S-methadone plasma 
concentrations are almost two times higher in CYP2B6 PMs 
than in CYP2B6 NMs.15,40,41 Few studies specifically compare 
CYP2B6 IMs with NMs and PMs.42 Genotype effects on plasma 
R-methadone concentrations are less than for S-methadone.40,41 
In most studies, decreased or no function CYP2B6 alleles were not 
associated with significantly greater mean plasma R-methadone 
concentrations40,41 (Table S1).

CYP2B6 variants and methadone pharmacokinetics. CYP2B6 
decreased or no function alleles were associated with decreased 
clearance and/or increased area-under-the-curve (AUC) for S-
methadone (Table S1). In one study, both CYP2B6 PMs and 
IMs had lower S-methadone clearance compared with NMs.43 
Specifically, apparent oral clearance of S-methadone was 35 and 
45% lower in CYP2B6*1/*6 and CYP2B6*6/*6 genotypes, and 
that of R-methadone was 25 and 35% lower, compared with 
CYP2B6*1/*1 genotypes.43 Only two studies included CYP2B6 
RMs. One study showed increased R- and S-methadone oral 
clearance in carriers of CYP2B6*4 after a single dose.43 The 
other study showed lower clearance in carriers of CYP2B6*4; 
however, CYP2B6*4 and CYP2B6*9 were analyzed separately 
without accounting for the CYP2B6*6 haplotype.44 There are no 

studies with patients homozygous for CYP2B6*4. As with plasma 
methadone concentrations, the influence of CYP2B6 genotype on 
methadone clearance is less with R- than S-methadone clearance 
(Table S1).43 Furthermore, CYP2B6 decreased function alleles 
are associated with decreased formation of S-EDDP and to a lesser 
degree R-EDDP.43

CYP2B6 variants and methadone dose in opioid use disorder. 
CYP2B6 genotype and methadone dose requirements have 
only been studied in the setting of opioid use disorder and not 
in the setting of pain (Table S1). In 321 Han Chinese patients, 
CYP2B6*6 carriers were more likely to be stably maintained on a 
lower methadone maintenance dose (< 55 mg vs > 100 mg).45 The 
mean methadone maintenance dose for CYP2B6 c.516G>T Israeli 
homozygotes (96 mg) was significantly lower than for CYP2B6 
c.516G>T heterozygotes (129 mg) and noncarriers (150 mg),46 
and in 100 Taiwanese patients (44 mg vs. 52 mg vs. 68 mg, 
respectively).47 However, the majority of studies fail to replicate 
these findings, with no significant association found between 
CYP2B6 genotype and methadone dose in opioid use disorder 
(Table S1).

CYP2B6 variants and methadone treatment response in opioid use 
disorder. Studies have not found a significant effect of CYP2B6 
genetics on methadone response in the treatment of opioid use 
disorder (Table S1). The outcomes (response) measured are either 
self-reported cessation of opioids or a negative urine opioid screen. 
In a study of 208 patients, there was no difference in the allele 
frequency of CYP2B6*6 in the responders vs. nonresponders.41 
This was in contrast to lower trough plasma R- and S-methadone 
concentrations found in high-dose nonresponders compared with 
low-dose responders and high-dose responders.41 Similar results 
were found in a study of 105 patients with no difference in allele 
frequencies between responders and nonresponders.48

CYP2B6 variants and methadone QTc interval. The main adverse 
effect studied in the context of CYP2B6 genotype is QTc 
prolongation. However, there is only one study directly evaluating 
CYP2B6 variants and the QTc interval.15 In that study of 179 
patients, CYP2B6 PMs had increased plasma S-methadone 
concentrations and had a mean QTc interval on methadone 
treatment 18 ms greater than other phenotype groups. CYP2B6 
PMs had a higher frequency of a long-QTc interval (i.e., > 450 ms 
for males and > 470 ms for females) than other phenotype 
groups. Although the CYP2B6 PMs had decreased metabolism 
of S-methadone, the clinical importance of this genetic effect is 
unknown since no patient developed a QTc > 500 ms during the 
study period, and there were no episodes of torsade de pointes 
during the study period.15

Therapeutic recommendations
The current evidence does not support changing standard pre-
scribing for methadone (both acute and chronic dosing) based 
on CYP2B6 genotype (Table  2). Most methadone-CYP2B6 
genetic evidence is for opioid use disorder. Oral methadone is 
generally titrated slowly in routine clinical care, and there is no 
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evidence to support an even slower titration in PMs. Only one 
study directly compared the QTc interval across CYP2B6 me-
tabolizer groups.15 The results do not support using CYP2B6 
genotype to guide dosing. Because the relationship between 
methadone concentrations and QTc is weak with a low mag-
nitude of effect, the relationship between CYP2B6 genotype 
and methadone pharmacokinetics cannot be extrapolated to 
CYP2B6 genotype and risk of QTc prolongation and thus can-
not support using CYP2B6 genotype to guide dosing. Clinical 
guidelines for ECG monitoring in the context of methadone 
therapy, including risk assessment of other clinical factors, 
should be followed. None of the pharmacogenetic information 
in this guideline should be interpreted to influence the use of 
ECG monitoring guidelines.

Pediatrics. Methadone is also used in the pediatric setting for 
the treatment of neonatal abstinence syndrome, iatrogenic 
opioid withdrawal, chronic pain, and perioperative pain. With 
regard to CYP2B6 ontogeny, CYP2B6 mRNA expression levels 
reach adult levels by 1 year of age.49 The impact of CYP2B6 
phenotypes on the pharmacokinetics of methadone is similar 
in children and adolescents as compared with adults.50,51 
A population pharmacokinetic model extrapolated adult 
pharmacokinetic parameters to a pediatric population and 
predicted increased exposure to methadone in CYP2B6 PMs.52 
Clinical outcome data associated with CYP2B6 phenotypes 
in pediatrics are limited to one study in which infants exposed 
to methadone in utero were less likely to require treatment 
for neonatal abstinence syndrome if they carried a CYP2B6 
decreased function allele53 and to one fatal case report of an 
infant who was a CYP2B6 PM and breastfeeding from a mother 
receiving methadone.54 Therefore, there is not enough data to 
support changes in prescribing based on CYP2B6 phenotype 

in children at this time, which is consistent with our adult 
recommendations.

Recommendations for incidental findings
Not applicable.

Other considerations
Although methadone is metabolized to a minor extent by 
CYP2D6, the CPIC guideline for opioids concludes that 
CYP2D6 genotype does not appear to affect methadone adverse 
events, dose requirements, or analgesia (CPIC Level C – no 
recommendation).55

Implementation of this guideline. Not applicable.

POTENTIAL BENEFITS AND RISKS FOR PATIENTS
While CYP2B6 genotype is associated with the pharmacokinetics 
of methadone, specifically S-methadone more than R-methadone, 
this has not been associated with clinically significant impli-
cations for therapeutic or adverse effects. Thus, there is insuffi-
cient evidence to change the prescribing practices of methadone 
based on CYP2B6 genetics. There is also insufficient evidence to 
change currently recommended ECG monitoring practices based 
on CYP2B6 genetics and an absence of evidence to recommend 
a slower methadone dose titration schedule based on CYP2B6 
genetics.

CAVEATS: APPROPRIATE USE AND/OR POTENTIAL MISUSE 
OF GENETIC TESTS
There are some important limitations to CYP2B6 genetic tests, 
as previously described in the Genetic Test Interpretation section. 
Based on clinical consequences for methadone of known vari-
ant alleles, this might not be clinically relevant for methadone. 

Table 2  Methadone dosing recommendations based on CYP2B6 phenotype

CYP2B6 phenotype
Implications for phenotypic 

measures Therapeutic recommendationa
Classification of 
recommendation

CYP2B6 ultrarapid metabolizer No data No recommendation No recommendation

CYP2B6 rapid metabolizer Limited evidence for decreased 
R- and S-methadone plasma 

concentrations

Standard dosing, titration, and 
monitoring of methadone

Moderate

CYP2B6 normal metabolizer Normal metabolism and plasma 
concentrations of R- and 

S-methadone

Standard dosing, titration, and 
monitoring of methadone

Strong

CYP2B6 intermediate metabolizer Increased S-methadone plasma 
concentrations; unknown clini-

cal implications
No difference in steady-

state R-methadone plasma 
concentrations

Standard dosing, titration, and 
monitoring of methadone

Moderate

CYP2B6 poor metabolizer Increased S-methadone plasma 
concentrations; unknown clini-

cal implications
No difference in steady-

state R-methadone plasma 
concentrations

Standard dosing, titration, and 
monitoring of methadone

Moderate

CYP2B6 indeterminate n/a No recommendation No recommendation
aClinical guidelines for ECG monitoring in the context of methadone therapy, including risk assessment of other clinical factors, should be followed.
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Therefore, it is important that clinical providers appreciate the 
limitations of targeted genotyping tests and understand which 
CYP2B6 variant alleles were and were not genotyped by a testing 
laboratory when interpreting results. In addition to altered activ-
ity of genetic variants, CYP2B6 is highly susceptible to induction 
and inhibition, thus clinical activity (including that of allelic 
variants)56 will reflect the influence of genetics and environment 
(drug interactions).57

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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