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Overview of Large Language Models (LLMs)

Milestone Models before the Introduction of LLMs
The Bag of Words (BoW) model introduced in the late 

1950s was one of the earliest attempts to automate 
text processing [1]. The BoW converts text documents 
into numerical vectors based on the frequency of word 
occurrence. The idea was that words appearing at a 
high frequency within a text are likely to have greater 
significance and relevance to the document’s overall theme. 
Despite its simplicity, the major limitation of this model is 
its inability to recognize context, losing semantic depth and 
interword relationships.

Word embedding, which translates words into vectors 
based on their contextual relationships, was developed 
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to provide an enriched semantic understanding [2]. This 
allows the Word2Vec algorithm to group semantically similar 
words, which proved to be advantageous for tasks such as 
sentiment analysis. However, despite the advancements 
facilitated by embeddings, they have proven to be 
insufficient for capturing broader linguistic nuances. This 
inherent limitation stems from the static nature of word 
vectors that cannot account for the diverse meanings of 
words in various contexts. 

The recurrent neural network (RNN), a groundbreaking 
neural architecture, has been introduced to recognize 
sequences within texts [3]. Standard feed-forward neural 
networks experience difficulties in processing sequential 
data, whereas RNNs preserve the memory of prior inputs. 
However, RNNs are plagued by issues related to long-
term dependencies, which posed challenges in retaining 
information from earlier parts of a sequence as it was 
extended. Long Short-Term Memory (LSTM) [4] and its 
variant, the Gated Recurrent Unit [5], address issues 
pertaining to long-term dependencies, thereby ensuring 
that context is preserved even in longer sequences. 

Furthermore, encoder–decoder (sequence-to-sequence) 
models have emerged to address complex natural 
language processing (NLP) tasks, such as translation [6]. 
By translating the input sequences into a fixed context 
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can understand and generate human-like text. They learn 
from reading immense amounts of information, similar to how 
humans learn from reading books and articles. LLMs can write 
essays, answer questions, create content, and much more, and 
they demonstrate knowledge on almost everything because of 
their extensive training with diverse data. 

BERT and GPT capitalize on the idea of pre-training on 
a large corpus and then fine-tuning for specific tasks, 
thereby allowing them to transfer the knowledge learned 
from extensive datasets to specialized applications where 
data might be limited [10]. The sheer scale of pre-training, 
with BERT learning from 3.3 billion words and GPT-3 from 
over 500 billion tokens, magnifies their ability to transfer 
and adapt this vast knowledge, revolutionizing how 
language models tackle data-sparse tasks. This paradigm 
shift has been significant in NLP, offering new possibilities 
and challenges for the development of models that can 
effectively understand and generate human language.

Differences between BERT and GPT
The main motivation behind BERT is to understand the 

context of words in sentences by bidirectionally examining 
texts. While traditional models, such as sequence-to-
sequence, examine text either from left to right or in both 
directions, BERT is designed to pre-train deep bidirectional 
representations by jointly conditioning both left and right 
contexts in all layers, which makes it especially powerful 
for context-reliant tasks such as named entity recognition, 

and then decoding the context into output sequences, 
the encoder–decoder architecture simulates human 
conversation. The LSTM layers in these models process 
text sequentially, ensuring that word order and context are 
retained. However, despite these capabilities, LSTM and its 
variants suffer from efficiency issues. The model accuracy 
is reduced by long sentences, which cause information 
dilution. Therefore, an architecture that can maintain 
context without compromising efficiency is required (Fig. 1).

Advent of the Transformer Architecture and LLM
The attention mechanism, which allows models to “focus” 

on specific parts of text during processing, addresses the 
inefficiency of LSTM [7]. This mimics how humans selectively 
focus on parts of a sentence while comprehending and 
translating it. The subsequently introduced transformer 
model leverages multiple attention mechanisms for parallel 
processing, which can maximize the advantages of Graphics 
Processing Units, and eliminates sequential constraints 
inherent in LSTMs. Although transformers significantly 
enhance the NLP model capabilities, new challenges have 
been introduced; their heavy computational demands have 
made transformers resource-intensive, which is a limiting 
factor in certain applications.

Expanding on the success of transformers, LLMs, such as 
Bidirectional Encoder Representations from Transformers (BERT) 
and Generative Pre-Trained Transformers (GPT), have emerged 
[8,9]. LLMs are highly advanced computational models that 

Fig. 1. Milestone models leading up to modern large language models. BoW = Bag of Words, LSTM = Long Short-Term Memory, BERT = 
Bidirectional Encoder Representations from Transformers, RoBERTa = Robustly Optimized BERT Pretraining Approach, GPT = Generative 
Pre-Trained Transformer, PaLM = Pathway Language Model, LLaMA = Large Language Model Meta AI
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sentiment analysis, and certain types of question answering.
Among the various applications of BERT, specialized 

models such as BioBERT, ClinicalBERT, SciBERT, PubMedBERT, 
RadBERT, and Radiology-specific BERT have been developed 
for biomedical, clinical, and radiology fields. Fine-tuned to 
their respective domains, these models excel in domain-
specific tasks by understanding their unique language 
structures and terminologies. The ability to extract medical 
information has significantly advanced medical research and 
improved healthcare services through enhanced document 
analysis.

Although BERT is fundamentally designed as an encoder 
to understand text deeply, it is not primarily built for text 
generation. Moreover, although BERT can interpret user 
queries with impressive accuracy, its ability to generate 
fluent and nuanced responses is limited. Conversely, 
GPT is aimed to be generative in nature and to predict 
the subsequent word in a sequence, which is a task that 
is intrinsically unidirectional. Although a bidirectional 
approach may offer a richer context, the generative nature 
of the GPT makes its decoder-based unidirectional design 
more effective. This positions the GPT as particularly suitable 
for chatbot systems, wherein the generation of extended 
answers or ensuring a seamless conversational flow is vital.

Chatbots Based on LLMs
Chatbots designed to emulate interactive human 

conversations have undergone significant advancements 
using models such as GPT. Contemporary chatbots can 
maintain coherent conversational flows and produce 
contextually pertinent responses, thereby significantly 
enhancing user interactions. Currently, various chatbots 
with unique functionalities and uses are available.

OpenAI’s chatbot, ChatGPT, was developed on the 
foundation of GPT-4 with one trillion parameters and 
excels in creative tasks such as content generation. This 
represents a monumental leap in artificial intelligence 
(AI), demonstrating remarkable abilities to understand 
and generate human-like text, revolutionizing how we 
interact with machine intelligence. Central to its advanced 
performance is Reinforcement Learning from Human 
Feedback, a process in which ChatGPT iteratively improves 
responses based on feedback from human trainers, thereby 
refining its understanding and output to align more closely 
with nuanced human communication.

However, it is trained on data up to 2021 and does not 
access real-time internet data, which poses a limitation in 

answering factual questions using the latest information 
(A recent update of ChatGPT, “Browse with Bing,” will be 
elaborated on later in this article). Microsoft’s Bing Chat, 
which is based on OpenAI’s GPT-4, was optimized for 
search services. Although this may not match the creative 
prowess of ChatGPT, its synergy with the Bing search engine 
empowers it to provide factual responses using real-time 
Bing search outcomes. Google’s Bard is currently grounded 
in its proprietary Pathway Language Model 2 (PaLM2). Bard, 
which continually refines its capabilities by harnessing 
Google’s extensive internal datasets, is emerging as a 
formidable competitor. These LLM-based chatbots are 
so widely applicable that identifying areas where they 
would not be beneficial is almost impossible. For instance, 
researchers who are not native English speakers can use 
chatbots to help them write manuscripts in English [11]. 
While specific policies on chatbot use differ among journals, 
most do not ban their use as long as it is transparently 
disclosed [12,13].

Characteristics of Contemporary LLMs
Contemporary LLMs, including the GPT-4 and PaLM2, have 

been trained on expansive and diverse datasets covering 
a wide range of domains, topics, and languages. Such 
extensive training equips them with a broad knowledge 
base and enables proficiency across various subjects without 
domain-specific fine-tuning. They have a remarkable 
ability for zero-shot learning, which indicates that they 
can understand and respond to tasks in which they have 
not been explicitly trained. By capturing the context and 
utilizing their extensive knowledge, these models can 
generate coherent and context-sensitive responses across 
various domains and applications, demonstrating proficiency 
in handling new challenges.

While LLMs, such as GPT-4, offer exceptional capabilities, 
their resource-intensive nature may render them inaccessible 
to small companies or lightweight applications. To address 
this issue, a trend has been observed toward developing 
LLMs that maintain high performance with a reduced 
model size. For example, despite having only 70 billion 
parameters, Meta’s open-source Large Language Model Meta 
AI 2 (LLaMA-2) rivals GPT-3.5. This makes it more accessible 
to research laboratories and organizations without the 
infrastructure for larger models. The lightweight variants of 
LLaMA, including Alpaca, Koala, and Vicuna can function 
with even fewer parameters, further enhancing efficiency. 
Other optimized models such as AlexaTM and BLOOM also 
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provide efficient alternatives and underscore the increasing 
interest in streamlined LLMs.

LLM in the Field of Radiology

Is ChatGPT Sufficiently Qualified to Help Radiologists?
Although originally trained primarily for human-like 

conversations, ChatGPT has demonstrated remarkable 
performance across various industries, seemingly without 
limitations in its range of applications. Nevertheless, 
the medical domain is highly specialized, with radiology 
representing an even more profound subdomain characterized 
by its unique jargon. Unlike BERT, which is typically fine-
tuned for specific domains, whether ChatGPT possesses 
specialized medical or radiological knowledge is unclear. 

Several studies have investigated this issue. Some studies 
have demonstrated that general-purpose LLMs, such as 
ChatGPT-3.5 and Google Bard, can generate appropriate 
responses to non-expert-level questions pertaining to 
cardiovascular disease, breast cancer, and lung cancer 
[14-16]. ChatGPT also performed at or near the passing 
thresholds for all three steps of the United States Medical 
Licensing Examination, thus demonstrating its potential 
for in-depth medical assistance [17]. Researchers have 
demonstrated the capability of ChatGPT to harness even more 
specialized knowledge in radiology, where it exhibited near-
passing performance with ChatGPT-3.5 [18] and definitive 
passing performance with ChatGPT-4 [19] in radiology board-
style examinations. One study aimed to assess the capability 
of ChatGPT-4 in solving “Diagnosis Please” quizzes from 
the journal, Radiology [20]. Considering ChatGPT’s inability 
to process images directly (GPT-4V[ision] will be elaborated 
on later in this article), only patient history and textual 
descriptions of imaging findings were provided. Even without 
images, ChatGPT provided correct answers in 54% of the 
quizzes. ChatGPT successfully demonstrated its capability 
to provide expert-level knowledge in the radiology domain 
without additional fine-tuning. 

Potential Applications of ChatGPT in the Field of 
Radiology

Regarding how radiological practices can leverage the 
capabilities of ChatGPT to enhance clinical workflows for 
radiologists (Table 1), one notable application of ChatGPT 
is its assistance in generating radiology reports. Radiology 
reports typically consist of two parts: imaging findings 
and impressions. Radiologists transmute images into text-

based imaging findings and formulate impressions grounded 
not only in these imaging findings but also in patients’ 
clinical contexts. Previous studies have indicated that when 
provided with only imaging findings, ChatGPT-4 can propose 
either a list of relevant differential diagnoses [21] or a 
singular impression [22]. ChatGPT may reduce the time and 
effort of radiologists, especially in challenging cases where 
differential diagnoses are not immediately apparent from the 
imaging findings. 

Structured reporting is another potential clinical and/or 
research application. The usefulness of structured reporting 
in radiology is well established. However, the major challenge 
is the considerable time overhead of creating structured 
reports from scratch or converting existing free-text reports. 
ChatGPT-4 demonstrates its capability to accurately convert 
free-text radiology reports into a structured reporting format 
[23]. The implementation of such automated generation of 
structured reports can facilitate more efficient data extraction 
and sharing. For example, some authors have employed 
ChatGPT-4 specifically for the extraction of oncologic 
information, such as the size change of each primary and 
metastatic lesions and the overall treatment response in 
patients with lung cancer [24]. ChatGPT may foster enhanced 
communication among radiologists, referring physicians, and 
co-researchers by improving the transparency and objectivity 
of radiology reports. 

ChatGPT also has the potential to enhance radiologist–
patient communication. A well-recognized problem with 
radiology reports is the use of technical jargon, which 
is challenging for patients to comprehend. ChatGPT-4 
demonstrated the capability to translate and simplify 
technical jargon in radiology reports into plain language, 
thus making the content more understandable to individuals 
without a medical background [25,26]. A simplified summary 
of radiology reports written in lay language would improve 
digital health literacy and encourage patients’ active 
involvement in matters of their own healthcare. 

The responsibilities of radiologists extend beyond the 
interpretation of medical images. They must leverage their 
extensive expertise in radiology and consider the clinical 
context to determine the appropriate specifics of each 
radiologic examination, such as the body region, scanning 
modality, utilization of contrast agents, and contrast phases. 
ChatGPT can appropriately propose detailed scanning 
protocols when medical histories and corresponding clinical 
questions are provided [27-29]. The implementation of 
such a chatbot has the potential to alleviate radiologists’ 
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workload by counseling physicians regarding the selection 
of appropriate imaging modalities and detailed scanning 
protocols. 

Performance Comparison of Contemporary Chatbots
Following the notable success of OpenAI’s ChatGPT, 

Microsoft’s Bing Chat and Google’s Bard were released. To 
date, only a few studies have compared the performances 
of these chatbots. In the task of generating responses to 
non-expert-level questions on lung cancer, ChatGPT-3.5 
demonstrated superior performance compared to Bard [16]. 
For tasks related to the simplification of radiology reports, 
both ChatGPT-3.5 and ChatGPT-4 outperformed the other two 
chatbots, Bard and Bing Chat [26]. 

However, acknowledging that these chatbots are 
undergoing continuous evolution at a remarkable pace is 
crucial. For instance, the transition from ChatGPT-3.5 to 
ChatGPT-4.0 required approximately three months, and the 
foundational language model for Bard was updated from the 
Language Models for Dialog Applications (LaMDA) to PaLM2 
in only two months. Thus, predicting which chatbot will 
dominate and the duration of its hegemony is challenging. 

Model Selection among Various LLMs
As mentioned previously, a notable achievement of 

the latest LLMs is their exceptional ability to perform 
both general and specialized tasks without the benefit 
of additional fine-tuning. However, it is well-known that 

the performance of generalist AI models can be enhanced 
further when limited to narrow specialized tasks by fine-
tuning on task-related datasets [30]. For example, although 
GPT-4’s performance in converting free-text radiology reports 
into structured reports was comparable to that of the fine-
tuned specialist AI model medBERT.de, it did not exceed 
the same [23]. When ChatGPT-3.5 was fine-tuned using 
the American College of Radiology (ACR) appropriateness 
guidelines, its performance in determining the appropriate 
imaging modality and the use of contrast agents surpassed 
not only that of ChatGPT-4 but also of human radiologists 
[27]. Several more recently released medical domain fine-
tuned LLMs, such as Med-PaLM [31], Med-PaLM2 [32], 
and ClinicalGPT [33], have demonstrated outstanding 
performance in medical question-answering benchmarks, 
outperforming both pure generalist and older specialist AI 
models. Radiology-GPT [34], which is more specifically fine-
tuned for the radiology domain, has also demonstrated 
promising performance in radiology-specific tasks. 
Theoretically, further fine-tuning of already domain-specific 
AI models is expected to yield an even higher performance.

However, both generalist and specialist AI models have 
their own unique strengths in nature [35]. Some researchers 
have argued that specialist AI models have inherent 
limitations in the medical domain [36]. Developing a 
unique specialist AI model for each of the myriad medical 
tasks is impractical. Moreover, medical tasks often become 
more complex owing to diverse clinical settings, thereby 

Table 1. Potential clinical and research applications of ChatGPT in radiology

Applications Inputs Outputs References
Generation of radiology 

reports
Text-based descriptions of image patterns
Image findings sections within chest radiograph 

reports

List of relevant differential diagnoses
New, short, one-line impression

[21]
[22]

Transformation into 
structured reporting

Free-text radiology reports for chest radiograph, 
CT, and MRI

Free-text CT reports from patients with lung 
cancer

Transformation into structured reporting

Extraction of oncologic information

[23]

[24]

Simplification of radiology 
reports for patients

Free-text radiology reports for chest CT and brain 
MRI

Free-text radiology reports from public database 
(MIMIC-III)

Radiology reports translated into plain 
language

Radiology reports simplified using plain 
language

[25]

[26]

Determination 
of radiologic study 
protocol

Medical conditions summarized in American 
College of Radiology appropriateness criteria

Radiology request forms

Clinical presentations regarding breast cancer 
screening and breast pain

Determination of imaging modality and use 
of contrast agent

Determination of imaging modality, body 
region, and contrast phases

Determination of imaging modality

[27]

[28]

[29]

MIMIC-III = Medical Information Mart for Intensive Care
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necessitating a more comprehensive approach. Radiologists 
should carefully consider the characteristics of the specific 
tasks they aim to achieve before selecting among pure 
generalist AI, domain-specific generalist AI, and specialist 
AI models.

Precaution in Utilizing LLMs: 1) Fake Information
The most notable and critical limitation of LLMs is 

commonly termed as “hallucination,” a phenomenon in 
which the model generates seemingly plausible information 
or assertions that are not grounded in factual reality. For 
instance, in response to inquiries concerning Lung-RADS 5 
and 6, both ChatGPT and Bard produced incorrect responses 
instead of clarifying that Lung-RADS categories 5 and 6 
did not exist [16]. One of the factors contributing to this 
phenomenon is bias or deficiency present in the training 
data. This situation is further exacerbated by the absence 
of transparency and verifiability because references for the 
responses generated by LLMs remain undisclosed. 

Another well-known phenomenon of LLM-based chatbots 
is that they often produce varied responses to the same 
prompts each time. A study on ChatGPT’s repeatability and 
reproducibility has demonstrated that although response 
consistency was maintained, the detailed wording changed 
in each instance [37]. This occurs because LLMs are not 
deterministic but rather stochastic in nature, working 
on the basis of the probability distribution over the 
possible tokens. While this stochasticity contributes to the 
versatility of responses, it also raises the critique of LLMs 
being “stochastic parrots.” This term suggests that despite 
producing a realistic sounding language, LLMs essentially 
reiterate the learned information from their datasets [38]. 
However, it is essential to recognize that this reiteration is 
a result of complex pattern recognition and application, not 
simple mimicry. Although they do not “understand” language 
as humans do, their ability to process and apply linguistic 
patterns is a significant leap in AI development.

The most promising strategy for mitigating this fake 
information issue is the implementation of retrieval-
augmented generation (RAG), which incorporates retrieval-
based models into generative models [39]. Considering 
that the retrieval process can reference not only standalone 
documents but also online data, RAG has the potential to 
diminish hallucinations by transparently providing source 
references. Furthermore, RAG may also offer increased 
scalability with continuous access to external and real-time 
knowledge. Currently, the three predominant chatbots—

ChatGPT (“Browse with Bing”), Bing Chat, and Bard, all possess 
the capability to search online data, although the precise 
algorithms they employ remain undisclosed to the public. 

Precaution in Utilizing LLMs: 2) Privacy Issue
Unlike the BERT and LLaMA, which are available as open 

sources, the GPT is a proprietary model. Utilizing GPT entails 
transmitting data to OpenAI servers. Therefore, inputting 
real patient medical information would conflict with data 
privacy laws. This is why most previous studies using 
ChatGPT utilized radiology reports from open datasets or 
created fictitious reports. This is the foremost issue that 
needs to be addressed when considering the incorporation of 
LLMs into clinical practice.

Implementing an open-source LLM as a stand-alone 
system within the intranet of a local hospital may be a 
good solution. A proof-of-concept study demonstrated the 
potential of using Vicuna, a LLaMA-variant model, to process 
real patient radiology reports without unnecessary de-
identification [40]. It should be noted that the situation 
can vary according to each country’s regulatory specifics 
and may also change with AI companies’ evolving service 
policies.

Future Direction: Multimodal AI
Multimodal AI is one of the most promising directions for 

future research. Google recently introduced a new visual-
language generalist AI model, PaLM-E, which incorporates 
real-world continuous sensor modalities into PaLM [41]. 
PaLM-E is capable of understanding both visual images and 
textual contexts, and successfully performs complex tasks 
without requiring additional fine-tuning. More recently, 
OpenAI has enhanced ChatGPT by incorporating new voice 
and image (GPT-4V[ision]) capabilities [42]. This approach 
to multimodal AI is also beginning to find applications in 
the medical domain (BiomedGPT [36], Med-PaLM M [43]), 
and more specifically, in the radiologic domain (RadFM [44]). 
The performance of multimodal AI models was better than 
that of language-based models in a recent radiology report 
summarization challenge (RadSum23) [45]. Multimodal AI 
can potentially be one of the most significant steps towards 
artificial general intelligence [46].

CONCLUSION

LLMs hold immense promise for enhancing the clinical 
workflow and serve as valuable tools for future research. 
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Radiologists seeking to maximize productivity should 
familiarize themselves with contemporary LLMs and 
their variant models. For those interested in academic 
applications of LLMs, understanding the current trajectory 
and evolution of these models can provide insightful 
perspectives and potentially inspire future research. 
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