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• Universal genetic testing for patient with ovarian cancer remains underutilized, especially among underserved populations.
• All patients with epithelial ovarian cancer should be offered germline genetic testing.
• Somatic genetic testing of ovarian tumors can identify actionable changes which may influence therapeutic decisions.
• Measurement of homologous recombination deficiency can guide PARP inhibitor therapy in patients with ovarian cancer.
• Mainstreaming genetic counseling may improve genetic testing rates.
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Germline and somatic genetic testing havebecomecritical components of care for peoplewith ovarian cancer. The
identification of germline and somatic pathogenic variants as well as homologous recombination deficiency can
contribute to the prediction of treatment response, prognostic outcome, and suitability for targeted agents (e.g.
poly (ADP-ribose) polymerase (PARP) inhibitors). Furthermore, identifying germline pathogenic variants can
prompt cascade genetic testing for at-risk relatives. Despite the clinical benefits and consensus recommendations
from several organizations calling for universal genetic testing in ovarian cancer, only about one third of patients
complete germline or somatic genetic testing. Themembers of the Society of Gynecologic Oncology (SGO) Clinical
Practice Committeehave composed this statement to provide anoverviewof germline and somatic genetic testing
for patients with epithelial ovarian cancer, focusing on available testing modalities and options for care delivery.

© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

A comprehensive, evidence-based approach to germline and so-
matic genetic testing in people with ovarian cancer is critical due to
the high prevalence of pathogenic variants (also referred to as “gene
mutations”) within this population. Results from this genetic testing
hold significant implications for patients and their relatives. Approxi-
mately 25%of patientswith ovarian cancer (including epithelial ovarian,
primary peritoneal and fallopian tube) have a pathogenic variant in a
enter, Division of Gynecologic
Medicine, 145 Michigan St SE

.M. Gressel).
cancer-associated gene on germline assessment [1]. An additional
6–7% of patients have a somatic pathogenic variant on tumor testing
and 11–15% of patients' tumors demonstrate homologous recombina-
tion deficiency (HRD) through epigenetic silencing of the BRCA1/2
genes [2,3]. Furthermore, other somatic findings can guide treatment,
including expression of folate receptor alpha for mirvetuximab
soravtansine [4] and, rarely, RET and NTRK gene fusions for RET and
TRK inhibitors [5].

The identification of germline and somatic pathogenic variants as
well as HRD can contribute to the prediction of treatment response,
prognostic outcome, and suitability for targeted agents (e.g. poly
(ADP-ribose) polymerase (PARP) inhibitors). Germline genetic testing
results can inform risk for other malignancies and prompt cascade test-
ing and cancer riskmanagement for at-risk relatives. Multiple organiza-
tions including the Society of Gynecologic Oncology (SGO), American
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Society of Clinical Oncology (ASCO) and National Comprehensive Can-
cer Network (NCCN), United States Preventive Services Task Force
(USPSTF), and American College of Obstetricians and Gynecologists
(ACOG) recommend universal germline genetic assessment for all
those diagnosed with epithelial ovarian cancer [6–10]. Despite this con-
sensus, only about one third of patients with ovarian cancer complete
the requisite germline or somatic genetic testing [8,11–13]. Further-
more, individuals of racial and ethnic minority status and those of
lower socioeconomic status have even more pronounced underutiliza-
tion of recommended genetic services [11,14]. The purpose of this state-
ment is to provide an overview of germline and somatic genetic testing
for patients with epithelial ovarian cancer, focusing on available testing
modalities and options for care delivery.

2. Germline genetic testing

Germline genetic testing refers to the sequencing of germline DNA
which is the the tissue derived from nucleated cells that becomes incor-
porated into the DNA of every cell in the body [15]. Germline DNA can
be extracted from blood, serum, or saliva. The DNA is evaluated for var-
iants, defined as genetic alterations that occur within all cells, including
germ cells, such that themodification can be passed to subsequent gen-
erations. The majority of deleterious germline genetic alterations are
inherited, with de novo genetic alterations being quite rare [16,17].

Testing is performed by clinical laboratories certified by the College
of American Pathologists (CAP) and Clinical Laboratory Improvement
Amendments (CLIA). Genetic testing laboratories often offer several op-
tions for germline testing, ranging from single-targeted detection of a
known familial pathogenic variant to large multigene panels including
dozens of cancer-associated genes. Historically, genetic profiling relied
on single-gene testing by gene Sanger DNA sequencing. This sequencing
method was limited by cost, depth of coverage, and the ability to ana-
lyze only a small number of genes at once. The advent of commercially
available next-generation sequencing (NGS) revolutionized patient ac-
cess to genetic testing. NGS uses massive parallel sequencing to analyze
numerous genes in a single assay, resulting in cost-effective, high-
throughput, comprehensive sequencing with a high depth of coverage
[18]. During the development of these technologies, it was standard
practice for the US Patent Office to issue patents on human genes. In
2013, the US Supreme Court unanimously ruled that DNA segments
are products of nature and could not be patented as an invention. This
ruling invalidated exclusive gene patent rights and resulted in a shift
towards affordable use of larger multigene panels, which can identify
sequence variants as well as large rearrangements and deletions [19].

The American College of Medical Genetics and Genomics and the
Association for Molecular pathology recommend the use of specific
terminology to describe variants identified in genes that cause
Mendelian disorders. This includes “pathogenic,” “likely pathogenic,”
“uncertain significance,” “likely benign,” and “benign” [20]. Variants
of uncertain significance (VUS) are classified as such because there is
insufficient evidence to determine whether the genetic alteration
impacts disease risk and, therefore, this result should not be used for
clinical decision-making or medical management [6,7]. VUS reclassifi-
cation rates reported in the literature range from 8 to 28%, with
most being downgraded to likely benign/benign, and fewer being
upgraded to likely pathogenic/pathogenic [21–26]. Most genetic test-
ing laboratories report these reclassifications to the ordering provider.
Providers should consider establishing a standard practice for periodic
monitoring of changes in classification of VUS. Additionally, patients
should be educated on publicly available resources including genetic
data repositories containing updated information on variant classifica-
tion (e.g. Clinvar https://www.ncbi.nlm.nih.gov/clinvar/) and re-
sources made available by commercial laboratoires that perform this
testing.

Today, there is an ongoing debate challenging the current standard
whereby germline genetic testing is limited to those patients with
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cancer at highest risk for carrying pathogenic variants, with many call-
ing for unrestricted testing among all solid tumor patients [27]. Based
on the high incidence of pathogenic variants and implications for treat-
ment and prognosis, the SGO and several other organizations recom-
mended universal germline genetic testing for patients with epithelial
ovarian cancer [28]. However, the SGO does not endorse a single clini-
cally available germline testing assay. Providers should select the germ-
line genetic test based on the personal and family history of each patient
and their preferences regarding which genes to be included in the eval-
uation. Insurance coverage of individual tests and affordability for the
patient may also guide test selection.

3. Somatic testing

In contrast to germline variants, somatic variants are defined as ge-
netic alterations that are acquiried in certain cells of the body, including
tumor cells, and excluding germ cells. Such alterations are spontaneous
and non-inheritable. Historically, performing comprehensive tumor se-
quencing was hindered by cost and technology. More recently, ad-
vances in NGS platforms have allowed for high-quality, rapid, and
more affordable tumor mutational profiling in the clinical setting. So-
matic tumor testing may employ targeted gene panel sequencing (spe-
cific genes of interest only), whole exome sequencing (WES) (protein-
coding regions of the genome), or whole genome sequencing (WGS)
(both coding and non-coding regions). Typically, asmore of the genome
is sequenced, the sequencing read-depth (the expected coverage on the
basis of the number and length of high-quality reads) decreases and
cost increases [29]. Depth of sequencing increases the ability to distin-
guish small point mutations from sequencing errors or normal variants
in a gene. In the clinical setting, commercially available tumor tests typ-
ically use targeted NGS panels rather thanWES orWGS due to cost and
ease of interpretation. Some platforms incorporate a matched normal
tissue sample to compare with the known tumor sample which can
aid in detecting somatic versus germline origin of a pathogenic variant.

Somatic genetic testing of tumors can lead to the discovery of action-
able changes which may influence therapeutic decisions. Pathogenic
variants in BRCA1 and BRCA2, whether inherited or acquired, are an im-
portant cause of HRD and render cells particularly sensitive to PARP in-
hibitors. HRD can also result from variants in other homologous
recombination genes such as RAD51C and RAD51D, through mecha-
nisms such as epigenetic silencing of homologous recombination
genes (including BRCA1 and RAD51C promotor methylation) [30]. In
the absence of germline variants, acquired somatic variants in BRCA1
and BRCA2 are found in approximately 6–7% of ovarian cancers, and
an additional 11–15%may demonstrate homologous recombination de-
ficiency (HRD) through epigenetic silencing of BRCA and other HRD
genes [2,3].

Comprehensive genomic analysis suggests that homologous recom-
bination is defective in approximately 50% of high grade serous ovarian
cancers [31] (see Fig. 1). Furthermore, identifying HRD in the tumor
holds implications for treatment (e.g. PARP inhibitor therapy) and,
thus, knowledge of HRD status is an important part of the treatment
plan for patients with ovarian cancer. There are several commercially
available tests aimed at predicting the presence of HRD based on geno-
mic features of the tumor. One such method of determining HRD is to
measure genomic instability in the tumor, which is an indicator of
past defective homologous recombination DNA repair leading to an ac-
cumulation of measurable genetic damage. Rather than analyzing indi-
vidual genes and their variants (causes of HRD), this somatic tumor
analysis measures areas of “genomic scarring” (effects of HRD) includ-
ing large scale transition state changes, loss of heterozygosity, and
telomeric allelic imbalances [32]. A score (also called a “genomic insta-
bility score”) can be calculated based on these features and this score
has been used as a surrogate marker in clinical trials to determine the
likelihood of response to PARP inhibitor therapy. Currently, there is a
paucity of literature comparing different methods of HRD assessment
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Fig. 1. Homologous recombination (HR) deficiency in ovarian cancer.
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and further research is needed examining available genomic and func-
tional assays and the clinical implications of their results [33].

There are many clinically available NGS somatic testing assays, and
the SGO does not endorse the use of one over another. A list of com-
monly available commercial somatic tumor testing platforms is in-
cluded in Table 1. Many, but not all, of these platforms offer HRD
scoring systems and data comprehensively comparing the available
platforms are lacking. Information regarding somatic testing is also
available via the SGO/Association of Community Cancer Centers
(ACCC) Joint Education Collaborative (https://www.sgo.org/practice-
management/collaborations/) [34].

In addition to indicators of HRD, tumor sequencing can detect other
targetable variants and microsatellite instability or a high tumor muta-
tional burden, which, while relatively rare in ovarian cancer, may sup-
port the use of immunotherapy. Future translational research
endpoints in gynecologic cancer clinical trials are needed to expand
the repertoire of actionable biomarkers.

4. Guidance regarding germline and somatic genetic testing
strategies

There are several approaches to genetic assessment, and providers
must individually decide which germline testing to use as well as
which patients should undergo somatic tumor testing. We have ad-
dressed some common areas of interest based on the current literature
and the NCCN guidelines for genetic assessment in ovarian cancer [7].

4.1. When is it appropriate to order single-gene vs. multi-gene germline
panel testing?

NGS allows for the simultaneous analysis of several genes and the ef-
ficacy of this process has resulted in a shift away from single gene as-
sessment (traditionally BRCA1/2 genetic testing) towards more
comprehensive panels that cover larger sets of genes associated with
cancer. The benefits of multi-gene panels include: 1) An individual's
personal/family history may increase risk for several pathogenic vari-
ants, and therefore, multi-gene testing offers the most time- and cost-
efficient method of identification with the highest yield of determining
the familial variant. 2) Individuals can have pathogenic variants inmore
than one gene and, therefore, an actionable finding could be missed
with limited single gene testing. 3) Pathogenic variants in some autoso-
mal dominant cancer-related genes including ATM, BRCA1/2, BRIP1,
MLH1, MSH2, MSH6, PMS2, EPCAM, MSH3, NBN, PALB2, and RAD51C are
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also associated with autosomal recessive conditions and, therefore,
can have implications for the offspring of families when both parents
carry the pathogenic variant [7].

The concerns with adopting multigene panel testing include:
1) Multi-gene panels can include intermediate/moderate risk genes
with limited associated data on cancer risk and/or no established guide-
lines for cancer risk-reduction. 2) As additional genes are added to
panels, the risk of detecting a VUS increases. A study of 2984 patients
with cancer undergoing an 80-gene germline NGS platform identified
a VUS in 47% of patients [35]. This highlights the need for pre-test
counseling with patients to comprehensively review the possible out-
comes and advantages/disadvantages of large panels. VUS pose a di-
lemma for patients and providers as the genetic alteration either
represents a benign polymorphism or an increased risk for cancer. Fur-
thermore, the interpretation of a VUS can vary between clinical labora-
tories, adding complexity to clinical counseling. The provider must be
prepared to counsel the patient regarding this result and establish a
follow-up plan to monitor the VUS for updated classification status.
3) As additional genes are added to panels, the risk of identifyingmosa-
icism (multiple cell lineages with different genotypes within the same
individual) and clonal hematopoiesis of indeterminate potential
(CHIP) increases. CHIP refers to the presence of clonal populations of he-
matopoietic stem cells and has been found to be associated with blood
cancer and coronary artery disease [36]. Providers must be prepared
to counsel patients on these findings and follow-up with the results
when indicated. 4) Multi-gene panels often include polygenic risk
scores. However, there are significant limitations in interpretation of
risk scores and for most tumors, including ovarian, the scores are not
yet validated for clinical management. 5) There are several commer-
cially available tests on themarket. Providers must consider several fac-
tors when selecting a multi-gene panel including the specific genes to
be tested on the panel, turnaround time, variant classification, methods
of DNA and/or RNA analysis, and cost. Furthermore, some testing labo-
ratories offer financial assistance for family member cascade testing if
a pathogenic variant is identified, which may improve the uptake
rates of genetic testing among at-risk relatives [7].

4.2.Which patients with ovarian cancer should have somatic tumor testing
performed in addition to germline testing?

Some providers prefer to order both germline and somatic testing on
all patients with ovarian cancer. An alternative approach is to reserve
somatic tumor testing for patients who do not have germline variants
(to identify appropriate patients for maintenance PARP inhibitor ther-
apy) or who experience disease recurrence (to identify actionable path-
ogenic variants which would inform treatment after first line therapy)
(see Fig. 2). Somatic tumor testing alone has been proposed as amethod
to screen all patients with ovarian cancer and then triage those found to
have somatic pathogenic variants to genetic counseling and further
gremline genetic testing [37]. There are concerns with utilizing somatic
testing alone. Sequencing of the tumor only, and not the germline, can
miss approximately 10% of clinically actionable germline pathogenic
variants [38]. Therefore, while tumor somatic testing can be considered
complimentary to germline genetic testing in ovarian cancer, individ-
ualswith negative tumor profiling should still undergo germline testing.
Additionally, insurance carriers may not pay for the repetition of tumor
somatic testing. The tumor's somatic mutational landscape, capabilities
of somatic testing, and relevant biomarkers can change over time.
Therefore, if the results of somatic testingwill not modify the treatment
plan, the provider may want to reserve somatic testing for the future.

4.3. How should providers consider HRD testing alone versus
comprehensive tumor molecular analysis?

For patients undergoing upfront treatment for ovarian cancer with
negative germline genetic testing, somatic tumor testing should, at a
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Table 1
Commonly available commercial somatic tumor testing platforms.

Tests Sequencing
Platform

Test features HRD
Score
available

Genes
Analyzed

Sample
requirement

Manufaturer's
Reported
Turnaround
Time

Website

Caris Molecular
Intelligence
Profile

Illumina DNA mutations, CNVs,
indels, MSI and TMB,
karyotype, whole
transcriptomic sequencing
(fusion analysis, variant
transcripts, gene
expression), MMR IHC,
ER/PR IHC, PD-L1 IHC, FOLR1
IHC. Genomic Scar Score
(GSS). HRD testing
performed by LOH.

Yes >700 genes in
targeted NGS
panel
>20,000 genes
included in
WES

Archival tissue:
FFPE block (preferred) or 25
unstained slides with a
minimum of 20% cells of
malignant origin for DNA
and 10% of malignant origin
for RNA.

Fresh Tissue:
4–6 biopsies with 18-gauge
needle or 6–10 biopsies with
22-gauge needle in 10%
neutral buffered formalin

10–14 days https://www.carislifesciences.
com/products-and-services/
molecular-profiling/testing-menu/

FoundationOne
CDx

Illumina Base substitutions, CNVs,
indels, MSI and TMB,
selected genomic
rearrangements and
signatures, FOLR1 IHC, PD-L1
IHC (as add-on test). LOH
score (previous available as
separate test-
FoundationFocus CDx BRCA
LOH). HRD testing
performed by LOH. FDA
approved companion
diagnostic test.

Yes 324 genes in
targeted NGS
panel

Archival tissue:
FFPE block +1H&E slide or
10 unstained slides +1H&E
slide with a minimum of 20%
cells of malignant origin and
surface area minimum of
25 mm2

12 days or less foundationmedicine.com/test/
foundationone-cdx

Myriad
MyChoice
CDx

Illumina SNVs, indels, large deletions
and duplications in multiple
genes related to HRD,
Genomic Instability Score.
HRD testing determined by
multiple measures of
genomic instability (LOH,
TAI, LST). FDA approved
companion diagnostic test

Yes 2 (BRCA1 and
BRCA2) and
assessment of
LOH, TAI and
LST across the
genome

Archival tissue:
FFPE block or 10 unstained
slides. Surface area
minimum of 25 mm2

Not reported https://myriad.com/oncology
/mychoice-cdx/

Myriad Precise
Tumor

Illumina SNVs, indels, CNV, fusions,
MSI, TMB, HER2/ ER/ PR IHC,
PD-L1 (available as add-on
test). HRD testing
determined by multiple
measures of genomic
instability (LOH,
telomeric-allelic imbalance,
large-scale state transition).

Yes 523 genes
genes in
targeted NGS
panel

56 genes
included in RNA
analysis

Archival tissue:
FFPE block with surface area
minimum of 25 mm2

containing at least 40 μm of
tumor (40 ng of DNA input)
and 20% tumor purity. If only
slides are available, one H&E
slide +8 additional
unstained 5 μm slides with
20–25 mm2 tumor surface
area.

Not reported https://myriad.com/oncology/
precise-tumor/

Tempus xT Illumina SNVs, indels, CNVs,
rearrangements and fusions,
MSI, TMB (PD-L1 IHC, MMR
IHC, HRD and Tumor Origin
testing available as add-on
test).

Yes 648 genes in
targeted NGS
panel

Archival tissue:
FFPE block or 10 unstained
slides <6 years old with a
minimum of 20% cells of
malignant origin and 10% of
malignant origin for RNA.
Surface area minimum of
25 mm2. Also requires
whole blood.

8–10 days https://www.tempus.
com/oncology/
genomic-profiling/

CNV= Copy number variants, MSI =Microsatelite Instability, TMB= tumor mutational burden, MMR=mismatch repair, indels = insertions and deletions, HRD (homologous recom-
bination deficiency), TAI = Telomeric allelic imabalance, LST = large-scale transition state transitions
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minimum, include molecular alterations that have immediate treat-
ment implications. This includes BRCA1/2 somatic variants, loss of het-
erozygosity, and HRD status as these findings can guide the use of
PARP inhibitor maintenance therapy [30]. For patients with recurrent
ovarian cancer, the tumor molecular analysis should be more compre-
hensive, including BRCA1/2, HRD status, microsatellite instability
(MSI), mismatch repair (MMR), tumor mutational burden (TMB),
BRAF, FRα, RET, and NTRK. Many of these tests involve analysis of im-
munohistochemical stains, copy number alterations, gene fusions prod-
ucts, splice variants and quantification of mutational burden (see
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Table 1 for availability of these ancillary molecular tests). Additionally,
comprehensive tumor molecular analysis may be especially important
for patients with ovarian cancers exhibiting more rare histologies
where treatment options are more limited or offered only in the setting
of a clinical trial [39]. Benefits of using HRD testing alone in the primary
setting include: 1) potential cost-effectiveness when compared to com-
prehensivemolecular profiling, and 2) reserving comprehensivemolec-
ular testing for future disease recurrence, as new biomarkers may be
incorporated into routine clinical care. Benefits of comprehensive mo-
lecular testing at the time of disease diagnosis include: 1) identification
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Fig. 2. Algorithm for genetic assessment in ovarian cancer.
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of actionable biomarkers which can guide expedient care at the time of
disease recurrence, and 2) early identification of individuals who may
be appropriate candidates for biomarker-driven clinical trials.

4.4. When is it appropriate to repeat germline genetic testing?

Theremay be a role formulti-gene panel testing in patients that pre-
viously tested negative for a single syndrome. A series of patients who
had noninformative testing prior to 2013 found that on retesting with
multi-gene panels, 7% of patients were found to have pathogenic vari-
ants [40]. Additionally, patients with ovarian cancer and genetic testing
limited to BRCA1/2 can consider retesting as the literature suggests that
up to 7% of patientswith ovarian cancerwill have pathogenic variants in
genes other than BRCA1/2 [41]. For patients with prior germline genetic
testing, it is important to evaluate the source of testing and therefore,
patients should be encouraged to obtain prior testing results. Commer-
cial companies that offer testing for ancestry and/or general health in-
formation directly to consumers often utilize microarray based single
nucleotide polymorphism testing. This testing has not been validated
for germline cancer-associated pathogenic variants and can have an
error rate of up to 40% [42]. Furthermore, these tests often only provide
coverage of a small number of founder pathogenic variants. Confirma-
tory germline genetic testing by a certified clinical laboratory is recom-
mended for all patients with prior direct-to-consumer commercial
testing.

4.5. When is it appropriate to repeat somatic genetic testing?

It would be appropriate to repeat somatic tumor testing if new ac-
tionable molecular biomarkers with approved therapeutics have be-
come available and were not interrogated at the time of the patient's
prior somatic testing. An example of this would be FRα testing to deter-
mine eligibility for mirvetuximab sorvatansine in folate receptor alpha
over-expressing recurrent ovarian cancer [43]. Understanding that the
molecular profile of a tumor may change over time, especially after ex-
posure tomultiple lines of treatment, repeat biopsy and tumor profiling
may yield novel and helpful information. However, repeat tissue sam-
pling is not always clinically feasible, in which case, repeat somatic test-
ing on archival tissue may be the best option.

5. Disparities and access to genetic testing

Despite the recommendations for universal germline genetic testing
in ovarian cancer by multiple organizations, genetic testing remains
underutilized, especially among underserved populations [6–10]. This
is critical given the significant prevalence of pathogenic variants includ-
ing BRCA1/2 across racial and ethnic groups [44]. A recent systematic re-
view and meta-analysis addressing genetic assessment for patients
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diagnosed with ovarian cancer found that only 39% of patients were re-
ferred to genetic counseling and 30% completed genetic testing. Fur-
thermore, rates of genetic counseling and genetic testing differed by
race, with genetic counseling completed by 43% of White patients, 24%
of Black patients and 23% of Asian patients while genetic testing was
completed by 40% of White patients, 26% of Black patients and 14% of
Asian patients [11]. The literature suggests that genetic disparities ex-
tend beyond germline testing. Huang and colleagues reported that pa-
tients with ovarian cancer and Medicaid insurance were less likely to
undergo somatic testing compared to those with private insurance
[45]. Gamble et al. confirmed this finding and further discovered that
the inequity in somatic testing rates has actually widened over time
[46]. Similarly, prior research suggests decreased utilization of cancer
risk-reducing interventions (e.g. breast screening and risk-reducing sur-
gery), and cascade genetic testing for at-risk relatives among medically
underserved populations [14].

The issue of underutilization and disparities in genetic services is
complex with several contributors. Frequently cited deficiencies in
this process include limited physician appointment time, complexity
of genetic counseling and testing referral, and patient uptake/adherence
with recommendations for genetic assessment. Potential strategies to
address these inequities include emphasizing genetic medicine educa-
tion, increasing awareness of implicit and explicit bias, and imple-
menting health information technology tools to assist providers with
patient communication about topics in genetics. Successful methods
to improve genetic testing among patients with ovarian cancer de-
scribed in the literature include use of telemedicine, embedding genetic
counselors in the clinic, and mainstreaming [11]. Mainstreaming is the
process whereby genetic counseling and genetic testing are performed
by non-genetics specialists, for example, by a member of the gyneco-
logic oncology clinical team, following upskilling in order to consent,
order, interpret, and deliver results [47]. Studies ofmainstreaming dem-
onstrate rates of successful completion of genetic testing ranging from
86 to 100% [47–50]. Finally, the conceptual framework termed
“Traceback” is being evaluated, whereby individuals (alive and de-
ceased)with ovarian cancer andwithout prior genetic testing are retro-
spectively identified and genetically tested. Subsequently, information
is shared with family members [51–53].

For patients, services that establish trust and address language bar-
riers, concerns about cost, and other social determinants of health that
may impede completion of genetic testing must be considered in
order to comprehensively address healthcare disparities in this field
[54–59]. Finally, although the COVID-19 pandemic has resulted in dis-
ruptions to oncology care, the acceleration of telemedicine has ex-
panded access to genetic services with reduced cost and similar
patient-reported knowledge, stress, and satisfaction levels [60].

Acknowledging that members of underserved racial and ethnic
groups experience pronounced under-recognition of hereditary cancer
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syndromes, the American Association for Cancer Research, American
Cancer Society, ASCO, and theNational Cancer Institute have cited a crit-
ical need to improve access to genetic cancer risk assessment and test-
ing for marginalized populations [61]. Further research in the field of
cancer genetics disparities is urgently needed. We must also consider
the historical and cultural experiences of specific populations to design
and implement successful, innovative strategies for addressing barriers
to scalable and equitable care.

6. Future directions

There are numerous molecular biomarkers undergoing evaluation
for ovarian cancer diagnosis, prognostication, and treatment. Such bio-
markers are increasingly incorporated into the evaluation of targeted
therapies.

6.1. Cell-Free DNA (cfDNA)

cfDNA is identified in blood, serum, plasma, or saliva and is either re-
leased into the blood passively from apoptotic cells or actively secreted.
Only a small amount of cfDNA comes from degraded or dying cancer
cells, and is referred to as circulating tumor DNA (ctDNA). A recent sys-
tematic review noted concordance between pathogenic variants identi-
fied in tumor and ctDNA; however tumor heterogeneity is a challenge in
assessing for concordance [62]. Specifically, ctDNA has been investi-
gated as a means for early diagnosis and confirmation of ovarian cancer
as well as for use in assessment of treatment response and prognosis
[63,64]. Further, ctDNA has been used to detect pathogenic variants
which have a high concordance with tumor DNA, and can be utilized
to support targeted therapies [65]. Lastly, ctDNA has also been used to
assess the presence of minimal residual disease in ovarian cancer pa-
tients following neoadjuvant chemotherapy and may be utilized in fu-
ture trials for therapy stratification [66]. Although the majority of
studies have investigated ctDNA in blood or plasma, cfDNA has also
been identified in other body fluids of patients with ovarian cancer, in-
cluding ascites and uterine lavage [67,68]. Some available tests report
variants that could be germline and others filter out germline variants
to more specifically quantify tumor ctDNA. However, currently com-
mercially available assays are not validated for the reporting of germline
variants and thus variants detected by ctDNA should be evaluated and
confirmed using a CLIA-approved germline assay [7].

6.2. RNA sequencing (RNA-Seq)

Progress in RNA sequencing with NGS technology provides the abil-
ity to quantify gene expression and alterations in ovarian cancer cells
[69]. RNA-Seq has emerged as a tool to identify gene function and al-
tered pathways in cancer pathogenesis. RNA sequencing has also char-
acterized aberrant genetic pathways in platinum and multi-drug
resistant ovarian cancer. While multiple somatic testing platforms
offer comprehensive RNA sequencing of tumor specimens, the clinical
applicability of the information obtained is not yet clearly understood.
Germline RNA-Seq may improve diagnostic yield; one series reported
a 9% relative increase in the detection of pathogenic variants when
performing simultaneous DNA and RNA sequencing in a clinical
context [70].

6.3. Cascade genetic testing

Cascade genetic testing is the process whereby probands (those af-
fected with a germline pathogenic variant) inform their at-risk rela-
tives of variant status [71]. Relatives can have up to 50% risk of
harboring the same pathogenic variant, and thus also are eligible for
genetic testing. The Centers for Disease Control and Prevention Office
of Public Health Genomics has designated cascade genetic testing a
tier one genomic application. However, only about a third of eligible
175
relatives complete cascade testing, representing a critical missed op-
portunity for cancer prevention and early detection, especially for syn-
dromes that increase risk for ovarian cancer [72]. Additionally, the
uptake of cascade genetic testing among racial and ethnic monitory
groups may be even lower as disparities across genetic medicine
have been well documented. Among 8 active trials on clinicaltrials.
gov evaluating interventions for cascade testing, 6 (75%) do not include
the influence of race, ethnicity, or language on uptake rates of cascade
testing as a primary or secondary objective [73]. The literature suggests
that a facilitated approach whereby the clinical team or genetic testing
laboratory assist the patient in mediating the process of cascade testing
may improve relative uptake [72]. Well-designed trials of strategies to
improve cascade testing uptake in diverse patient populations are
urgently needed.

7. Conclusions

Genetic testing has become integral in the care of ovarian cancer pa-
tients. The growing understanding of the burden of germline, somatic
and HRD alterations in ovarian cancer has enhanced opportunities for
targeted treatment and genetically tailored cancer prevention. How-
ever, despite guidelines promoting universal genetic assessment, a test-
ing gap persists in ovarian cancer, as patients are receiving genetic
services neither consistently nor equitably [11,14,59]. Several strategies
have been proposed to improve access to genetic assessment including
mainstreamingof genetic services in the oncology office, embedding ge-
netic counselors, utilization of telemedicine platforms, and traceback
programs to identify and genetically test previously diagnosed but
unreferred patients with ovarian cancer [11,51]. Based on published lit-
erature, mainstreaming yields the highest rates of genetic testing com-
pletion, and in practices where this is feasible, clinicians could consider
incorporating this practice. Optimizing genetic assessment for patients
with ovarian cancer will enhance multiple intersecting aspects of their
care. Therefore, individual providers and health care systemsmust con-
tinue to work towards the overarching goal of achieving universal
genetic assessment in people with ovarian cancer.
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